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Abstract

Clinical binary end-point traits are often governed by quantitative precursors. Hence it may be a prudent strategy
to analyze a clinical end-point trait by considering a multivariate phenotype vector, possibly including both
quantitative and qualitative phenotypes. A major statistical challenge lies in integrating the constituent phenotypes
into a reduced univariate phenotype for association analyses. We assess the performances of certain reduced
phenotypes using analysis of variance and a model-free quantile-based approach. We find that analysis of variance
is more powerful than the quantile-based approach in detecting association, particularly for rare variants. We also
find that using a principal component of the quantitative phenotypes and the residual of a logistic regression of
the binary phenotype on the quantitative phenotypes may be an optimal method for integrating a binary
phenotype with quantitative phenotypes to define a reduced univariate phenotype.

Background
Clinical end-point traits are usually binary (affected/unaf-
fected) in nature. However, these end points are often gov-
erned by quantitative precursors. On the other hand, a
single quantitative trait may not be a sufficiently good sur-
rogate for the end-point trait, and it may be more optimal
to analyze a genetically relevant multivariate phenotype
vector that includes both quantitative and qualitative phe-
notypes. Association analyses of multivariate phenotypes
involve multiple statistical challenges, the primary one
being the construction of the phenotype, particularly in
the presence of both quantitative and binary traits in the
multivariate phenotype vector. We assess the perfor-
mances of some genetic association methods for certain
choices of the multivariate phenotype vector using the
data on the simulated phenotypes in the framework of the
1000 Genomes Project provided in Genetic Analysis
Workshop 17 (GAW17).

Methods
Data description
For our analyses, we used the GAW17 data on the three
quantitative traits (Q1, Q2, Q4) and the single binary
trait for 697 individuals along with their genotypes at all
the available 24,487 single-nucleotide polymorphisms
(SNPs) distributed over the 22 autosomal chromosomes.
We used data on age, sex, and smoking status (defined
as a binary variable) as covariates because these factors
could be potential confounders in the association ana-
lyses. We did not remove any SNP based on its minor
allele frequency (MAF) because one of our goals was to
identify rare variants involved in the etiology of the phe-
notypes. We performed our analyses on all 200 available
replicates in the GAW17 data set.

Statistical methods
Likelihood-based methods, such as variance components
[1,2], have been traditionally used for the association map-
ping of multivariate phenotypes. However, such analyses
are susceptible to the choice of the joint probability distri-
bution of the components of the vector. In particular, the
popular choice of a multivariate normal distribution for
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the vector of phenotypes is clearly inappropriate if even
one of the components of the vector is binary in nature.
Other methods [3,4] combine the association statistics of
the different components (both binary and quantitative) of
a multivariate phenotype vector but use a multivariate
normality assumption for the vector of univariate statistics,
thereby compromising the robustness of the method. An
alternative approach that circumvents the problem of
modeling the multivariate phenotype is to obtain a
reduced univariate phenotype using principal components
[5].
We define five univariate phenotypes based on the three

quantitative traits Q1, Q2, and Q4 and the single binary
trait (denoted Z): (1) the first principal component of Q1,
Q2, Q4, and Z (denoted T1); (2) the first principal compo-
nent of Q1, Q2, and Q4 only (denoted T2); (3) the first
principal component of Q1, Q2, and Q4 with Z as a cov-
ariate (denoted T3); (4) a risk score of Z using Q1, Q2, and
Q4 as predictors (denoted T4); and (5) the first principal
component of Q1, Q2, Q4, and the proportion of the risk
score of the binary trait unexplained by Q1, Q2, and Q4
(denoted T5). The principal components are computed on
the basis of the variance-covariance matrix of the pheno-
types included in the multivariate phenotype vector. The
pairwise correlations (averaged over the replicates)
between the different traits are as follows: (Q1, Q2): 0.23;
(Q1, Q4): −0.31; (Q1, Z): 0.55; (Q2, Q4): 0.01; (Q2, Z): 0.4;
and (Q4, Z): −0.53. The risk score is defined as the condi-
tional probability of an individual being affected with
respect to the binary trait (Z = 1) given the trait values
(X1, X2, and X3) corresponding to the three quantitative
phenotypes Q1, Q2, and Q4, respectively, and is computed
using a binary logistic model:
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where the parameters b0, b1, b2, and b3 are estimated
using the maximum-likelihood method. The proportion
of the risk score unexplained by the quantitative traits is
defined as Z E Z X X X− ( , , )1 2 3 and is computed as the
residual of the logistic regression of Z on X1, X2, and X3.
For the test of association, we assess the relative per-

formances of two association methods on the reduced
phenotype; the two methods are analysis of variance
(ANOVA) and a modification of a novel quantile-based
approach developed by our group [6]. The ANOVA
tests for equality of means of the quantitative trait
values across the three genotypic groups at a SNP, and
the test statistic is distributed as F2,694 under the null
hypothesis of no association. However, studies have
shown that the assumption of homoskedasticity of the

quantitative trait values for the different genotypic
groups at a SNP, which is a requirement of ANOVA,
may not be valid and may lead to misleading inferences
on association [7,8].
The quantile-based regression approach is a model-free

alternative that tests for equality of marker allele frequen-
cies within different quantile intervals of the quantitative
trait; it is based on the Armitage trend test [9]. We note
here that the original quantile-based method [6] was based
on a fixed number of quantiles. In addition, the test statis-
tic in the original method was defined in terms of the slope
coefficient of the linear regression of the frequencies of a
marker allele on the mean quantitative trait values in the
different quantile intervals; the regression coefficient is 0
under the null hypothesis of no allelic association However,
our independent simulations showed that for SNPs with
rare variants, the variation in estimated allele frequencies
in most quantile intervals is minimal, and hence the esti-
mated slope coefficient of the linear regression does not
depart significantly from 0, resulting in reduced power.
In our modified approach, we compute the ratio of the

between-quantile variance to the within-quantile variance
of the proportion of allele frequencies along the lines of
the ANOVA statistic for different numbers of quantile
intervals ranging from 2 to 10. The optimal number of
quantile intervals is determined by the maximum of this
ratio, and the Armitage trend test is performed based on
this number. Unlike the original regression test statistic,
which depends on the number of fixed quantiles, the
Armitage trend test statistic is distributed as a chi-square
with 1 degree of freedom, irrespective of the optimal
number of quantiles.
To correct for multiple testing, we use the false dis-

covery rate (FDR) procedure [10] with an overall rate of
0.05 to identify SNPs significantly associated with the
phenotype.

Results
The GAW17 simulation model was available to us. To
assess the power of detecting association, we considered
the causative SNPs that modulated any of the component
phenotypes in the multivariate phenotype vector. The
empirical power at each such SNP was obtained as the
proportion of replications in which the SNP was signifi-
cantly associated with the relevant phenotype definition.
Both the ANOVA and the quantile-based regression were
adjusted for age, sex, and smoking status. Although the
ANOVA approach incorporated these variables as covari-
ates at the individual level, the quantile-based regression
incorporated the mean values of these variables within
each quantile interval as covariates. In Table 1 we present
a comparison of the number of causative SNPs modulating
Q1 and Q2 identified with empirical power 0.3, given an
overall FDR of 0.05 for the different phenotype definitions.
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We found that ANOVA identified more causative SNPs
than the quantile-based method did. T5 yielded the maxi-
mum power and T4 the minimum power among the five
phenotype definitions for both the ANOVA and the quan-
tile-based method. We also found that T2 (which does not
involve the binary trait Z) performed better than T3

(which uses Z as a covariate) with respect to the causative
SNPs modulating Q1 or Q2. The maximum empirical
power was obtained for the SNP C13S523 in the FLT1
gene on chromosome 13 (modulating Q1) for all five phe-
notypes (1.0 for T1, T2, and T5, 0.99 for T3, and 0.89 for T4

using ANOVA; 1.0 for T5, 0.89 for T1, 0.82 for T2, 0.67 for
T4, and 0.63 for T3 for the quantile-based method). The
two flanking SNPs C13S522 and C13S524 (modulating
Q1) also exhibited significant evidence of association
based on T1 and T5 in a large proportion of replications.
The empirical powers corresponding to SNP C6S5380

in the VNN1 gene on chromosome 6 (modulating Q2)
were greater than 0.5 based on T1 and T5 and greater
than 0.4 based on T2 and T3. Similarly, the SNPs
C4S1877, C4S1878, and C4S1889 in the gene KDR on
chromosome 4 (modulating Q1) were significantly asso-
ciated based on T2 and T5 in more than 50% of the repli-
cations using ANOVA and in more than 40% of the
replications based on T1 using ANOVA and based on T1,
T2, T3, and T5 using the quantile-based method. All the
significant SNPs mentioned have common variants
(MAF > 0.01), except for C4S1877 and C4S1889, which
have rare variants (MAF = 0.0007).
We also obtained significant evidence of association in

more than 30% of the replications at C18S2492 in the
gene P1K3C3 on chromosome 18 with T1 and T5, and
C17S4578 in the gene PRKCA on chromosome 17 with T3

(both modulating the latent liability trait and hence the
binary trait Z).

Discussion and conclusions
We have developed a method that integrates quantitative
phenotypes with binary traits to construct a reduced uni-
variate phenotype for association analysis of a multivariate
phenotype vector. Among the five approaches to defining
the reduced phenotype (labeled T1–T5) we found that

both the model-based ANOVA and the model-free quan-
tile-based regression yielded the maximum power for the
phenotype defined by the principal components of the
quantitative traits and the proportion of the risk score
unexplained by the quantitative traits (T5) and the mini-
mum power for the phenotype defined by the risk score of
the binary trait as a function of the quantitative traits (T4).
This finding can be explained by the fact that the risk
score defined by T4 does not capture the complete infor-
mation on variability of Q1 and Q2 and contains only that
part of the variability that explains Z. Hence there is a loss
of information and power when using T4 as an association
phenotype. On the other hand, T1, which involves compu-
tation of principal components using the binary trait Z as
a variable, is expected to capture less information on cov-
ariability of Q1, Q2, and Q4 compared to T5, which uses
the continuous residuals of Z on Q1, Q2, and Q4 in the
computation of the principal components. Because the
binary trait Z is a function of Q1 and Q2, removing the
effect of Z from a principal component involving Q1 and
Q2 leads to a reduction in the information on both Q1
and Q2, and hence T3, which uses Z as a covariate, is less
powerful than T2 (which does not involve Z) in identifying
SNPs associated with Q1 or Q2.
The ANOVA approach provides consistently higher

power than the quantile-based method. The ANOVA is a
genotype-based method that models the distribution of
quantitative phenotypes conditioned on genotypes. On the
other hand, the quantile-based method is allele based and
models the distribution of allele frequencies conditioned
on phenotypic quantiles. If the sample size is reasonably
large, then the asymptotic properties of the ANOVA sta-
tistic hold and the ANOVA is expected to be more power-
ful than the model-free quantile-based method. Although
the modification of the original quantile-based method [6],
which allows us to determine an optimal number of quan-
tiles instead of fixing the number a priori, significantly
increases the power to detect association, the Armitage
trend test does not use the actual values of the quantiles
and hence may contain less information on association
than the ANOVA statistic does. We are currently explor-
ing alternatives that can incorporate the quantile values
into the association tests.
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