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Abstract

linkage signals.

We report two approaches for linkage analysis of data consisting of replicate phenotypes. The first approach is
specifically designed for the unusual (in human data) replicate structure of the Genetic Analysis Workshop 17
pedigree data. The second approach consists of a standard linkage analysis that, although not specifically tailored
to data consisting of replicate genotypes, was envisioned as providing a sounding board against which our novel
approach could be assessed. Both approaches are applied to the analysis of three quantitative phenotypes (Q1, Q2,
and Q4) in two sets of African families. All analyses were carried out blind to the generating model (i.e., the
“answers”). Using both methods, we found numerous significant linkage signals for Q1, although population
colocalization was absent for most of these signals. The linkage analysis of Q2 and Q4 failed to reveal any strong

Background

The simulated mini-exome data for Genetic Analysis
Workshop 17 were derived from the pilot3 study of the
1000 Genomes Project (http://www.1000genomes.org).
The data consist of information on 3,205 genes contain-
ing 24,487 single-nucleotide polymorphisms (SNPs) on
697 unrelated individuals drawn from 7 population sam-
ples. The family data consist of 8 extended pedigrees
(varying in size from 73 to 128 individuals), also with a
total of 697 individuals. The pedigrees were seeded with
202 founders, who were described as having been drawn
at random from the 697 unrelated individuals. Two
hundred replicates were provided for both the unrelated
individuals data set and the family data set. A note-
worthy feature of these data is that the SNP genotypes
from replicate to replicate are identical. In other words,
for any given individual over all replicates, each person
is represented as though he or she is one of 200 mono-
zygotic twins.
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Because of the unusual nature of the data sets, we
elected to explore an innovative approach that takes
into account the data’s replicate structure. As a comple-
ment to this approach, we also carried out an old-fash-
ioned linkage analysis that does not take into account
the fact that the families are not genetically independent
from one replicate to another.

Because our analyses were blind to the generating
model, we began our investigation by obtaining some
descriptive statistics. We started with the genotypes of
the N = 697 unrelated individuals and quickly discov-
ered that a large proportion (38.5%) of the 24,487 SNPs
have a frequency of 1/(2N); that is, only one copy of the
variant exists in the entire set of unrelated individuals,
and fully 87.2% have a minor allele frequency less than
5.0%. Under usual circumstances, this collection of
SNPs would have such a low polymorphic information
content as to render ordinary linkage analysis powerless
to identify genes involved in the quantitative phenotypes
of interest. Fortunately for the family data set, the data
simulators provided fully informative identity-by-descent
(IBD) matrices for each pair of individuals at each gene.
These IBD scores were given as 0, 0.5, and 1, denoting
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the sharing of 0, 1, or both genes identical by descent.
Both methodological approaches reported here used
these IBD matrices exclusively for the linkage analyses.

We note that in the process of simulation, recombina-
tion could occur only once per chromosome per meiosis
and that this recombination could not occur within a
gene. This allows us to refer to IBD at a particular gene.
In real data, we would not have perfect information,
although with extensive genotyping and sequencing we
would be able to approach this. Recombination within a
gene is also possible, although it is less likely than in the
larger intergenic regions. Furthermore, a multipoint ana-
lysis is unnecessary because the single point information
is completely informative.

Before performing the linkage analyses, we began by
making sure that the data had the properties we
expected. We believe that this is an important but often
neglected step for both real and simulated data. While
attempting to identify the population origin of the 202
founders of the 8 pedigrees, we discovered to our sur-
prise that 4,239 SNPs had been altered, although these
alterations did not prevent the unambiguous identity
and population origin of the founders. We were even
more surprised to discover that the founders were not a
random sample from the unrelated individuals data set.
Instead, all but three of the founders were drawn from
the two African samples. Moreover, three of the eight
pedigrees were established by approximately equal num-
bers of founders from the Yoruba and the Luhya popu-
lation samples. The remaining five pedigrees were
primarily founded by one ethnic group or the other.
Under ordinary circumstances when using genetic mar-
kers for a linkage analysis, it is more cumbersome to
analyze families composed of individuals drawn from
various ethnic groups because differences in allele fre-
quencies need to be taken into account (see Suarez et
al. [1] for an example of combining families of different
ancestries in a linkage analysis). Using IBD matrices
somewhat obviates this problem, although the possibility
looms large that different ancestral populations may be
segregating different causative genes.

Accordingly, we decided to concentrate our attention
on two groups of kindreds: (A) pedigree 2 (deleting
founder 2005 [a Tuscan] and all of her descendants),
pedigree 3, and pedigree 4 (deleting founder 4021 [a
Yoruba] and all of her descendants); and (B) pedigrees 5
and 6. Individuals in kindred group A are all sampled
from the Luhya population, a Bantu ethnic group living
primarily in Kenya. It is unclear whether the Luhya sam-
ple from the 1000 Genomes Project was randomly
sampled from all of the 16 tribes that make up the
Luhya ethnic group or from a smaller subset. Individuals
in kindred group B are all Yoruba, a large heterogeneous
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group of about 30 million people from West Africa,
predominantly Nigeria.

Methods

The unusual structure of the data replicates (varying
covariates but a constant genetic structure) led us to
generate a novel quantitative phenotype from the data
as our target of analysis. For a typical variance compo-
nents linkage analysis, we control for covariates by using
the residual after linear regression as a quantitative phe-
notype. In the linear regression, we model the trait as:

Y=a+p'x+y"g+e¢, (1)

where o is the global mean value of the trait, B is a
vector representing the linear effect sizes of the covari-
ates (x), ¥ is a vector representing the linear effect sizes
of true (but unknown) causative genetic variants (g),
and ¢ represents the sum of all other factors. Typically,
we analyze:

Yresidual=Y—(d+BTX)=iTg+S=G+S (2)

as the quantitative phenotype, where ¢ and ﬁ , the
maximum-likelihood estimators (MLEs) of the para-
meters @ and B, are computed from the data and G
represents the sum of the genetic contributions to the
phenotype.

For our analysis, we treated the observations of an
individual across multiple data replicates as repeated
measures. To do this, we used the framework of a gen-
eralized linear mixed model (GLMM) as implemented
in PROC GLIMMIX in SAS 9.2 [2] to estimate the
MLEs ¢’ and ﬁ” that take the repeated measures into
account. As a result, the derived phenotype we used for
analysis had a single value for each individual i given by:

In this way, each unique genetic observation is
counted only once in the analysis, but full information
from the repeated measures is used.

For the standard linkage analysis (which does not take
into account the repeated measures feature of these
data), we used SOLAR [3], and the p-values were com-
bined over multiple replicates using Fisher’s method [4].
Smoking, Sex, and Age were used as covariates,
although the nonsignificant covariates were not in the
final model. We chose not to include Population among
the covariates because our analyses were performed
separately for the Luhya pedigrees and the Yoruba
pedigrees.
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Results

We carried out an Eigenstrat analysis [5] using all
24,487 SNPs from the unrelated individuals sample. We
observed the expected separation between the broad
geographic groups (data not shown). Given the debate
surrounding Entine’s [6] controversial book that points
out that virtually all the endurance marathon records
are held by East Africans while virtually all the shorter
speed records are held by West Africans, we were inter-
ested to see the degree of clustering between just the
Luhya sample and the Yoruba sample (Figure 1). As can
be seen, the Luhya sample is tightly clustered for the
first three principal components, whereas the Yoruba
sample is much more spread out. (By comparison, the
two Chinese samples and the Japanese sample are vir-
tually identical [data not shown].)

We applied our two approaches to the first 50 repli-
cates for which SOLAR obtained a convergent solution.
The significant results (defined as p < 10™* from either
method) are reported in Table 1. After receiving the
simulation parameters, we divided these into true posi-
tives and false positives. For the traditional linkage ana-
lysis approach, we list the median p-value from the
individual replicates, the range of p-values, and the p-
value obtained by combining the data from the families
across the 50 replicates (i.e., an analysis based on a sam-
ple 50 times the size of a single replicate, N = 20,000).
The novel repeated measures analysis (performed using
the GLMM) is an analysis based on only the individuals
from a single replicate (N = 400), but it uses the infor-
mation from 50 repeated measures of each trait to
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provide a more accurate estimate of the total genetic lia-
bility for each individual.

Figures 2 and 3 graphically report the linkage results
for Q1 for the Luhya and Yoruba samples, respectively.
Note that these analyses are based on 150 replicate ped-
igrees for the Luhya sample and 100 replicate pedigrees
for the Yoruba sample. Also, because we used the IBD
matrices for our single-point analyses, no inference
regarding the strength of a linkage signal is made for
regions in between the actual genomic positions of the
genes.

A striking result of our analyses is the lack of colocali-
zation of linkage signals between the two African
groups. Moreover, the maximum signal is often a pla-
teau that occurs over a region of a number of contigu-
ous genes. This appears to be an artifact of the
simulation, which allowed only a single recombination
per chromosome for each meiosis. Consequently, the
position of the recombinations is constant for all of the
replicates.

Figures 2 and 3 indicate that the linkage signals
obtained with Fisher’s method tend to be higher than
those obtained using the GLMM, which, we speculate, is
due to the fact that Fisher’s method treats the identical
genotypic structure of the 50 replicates as independent
observations.

Discussion and conclusions

The most striking feature revealed by our linkage analy-
sis of the quantitative trait Q1 is that, with one possible
exception, none of the five signals seen in the Luhya
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Figure 1 First three principal components from an Eigenstrat analysis of two African populations
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Table 1 True positives and false positives from Fisher’'s method and GLMM analyses
Trait Gene Chromosome Position Families GLMM analysis, Fisher’'s method,

—log;o(p-value) —log.o(p-value)

Combined Min-max Median

True positives
Q1 VEGFA 6 43,846,955 Luhya 3430 70.23 0.78-4.95 233
Q1 FLT1 13 27,775,331 Yoruba 20.85 30.56 0.00-347 142
Q1 KDR 4 55,650,982 Luhya 291 539 0.00-3.36 0.65
Q1 VEGFC 4 177,845,572 Yoruba 3.50 443 0.00-3.28 0.58
Q2 PLAT 8 42,152,676 Luhya 539 412 0.00-1.88 0.65
Q2 SREBF1 17 17,658,674 Yoruba 4.65 244 0.00-2.87 045
False positives
Q1 LAMB3 1 207,855,310 Yoruba 1.69 5.07 0.00-2.62 0.67
Q1 VCAN 5 82,868,901 Luhya 525 15.64 0.00-5.64 1.03
Q1 UPPI1 7 48,100,910 Luhya 212 412 0.00-3.53 043
Q1 LMTK2 7 97,660,051 Yoruba 2.76 4.88 0.00-3.98 0.55
Q1 CDCA2 8 24,830,588 Yoruba 541 12.10 0.00-3.52 0.73
Q1 WDR40A 9 34,097,504 Yoruba 340 4.88 0.00-3.40 049
Q1 PPP2R4 9 130,913,706 Yoruba 287 4.08 0.00-2.88 047
Q1 NPTX1 17 76,060,297 Luhya 8.71 17.20 0.00-3.81 1.1
Q4 LOC643659 20 20,004,221 Luhya 0.89 429 0.00-3.15 049
Q4 RNF145 5 159,708,779 Yoruba 452 0.65 0.00-2.51 0.00

sample colocalize with any of the four signals found in
the Yoruba sample. The exception is the signal seen on
chromosome 8 at CDCA2, although only the Yoruba
signal is highly significant. Had we analyzed each of the

three Luhya pedigrees and each of the two Yoruba pedi-
grees separately, we would have found family-specific
signals, all of which would have been stronger than
those reported in Table 1 because of our pooling of
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Figure 2 Linkage analysis for Q1 for families 2, 3, and 4 of the Luhya pedigree. Genome-wide results of Fisher's method and GLMM
analyses of the Q1 quantitative phenotype in the three Luhya pedigrees. To make the figure more readable, the ratio of the chromosome
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Figure 3 Linkage analysis for Q1 for families 5 and 6 of the Yoruba pedigree. Genome-wide results of Fisher's method and GLMM analyses
of the Q1 quantitative phenotype in the two Yoruban pedigrees. To make the figure more readable, the ratio of the chromosome lengths is not
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pedigrees from the two ethnic groups. Clearly, for pri-
vate polymorphisms or in cases of locus heterogeneity
(see, e.g., Morton [7] for the first published example of
locus heterogeneity documented by a linkage analysis),
linkage analysis of individual families often is preferable
to combining all families from a single ethnic group, as
we originally did. Indeed, Culverhouse et al. [8], analyz-
ing the unrelated individuals data set, also found that
pooling populations could obscure a strong signal even
when Population was included as a covariate.

Our Eigenstrat analysis of just the two African sam-
ples from the unrelated individuals file (Figure 1) sug-
gests much greater genetic similarity among the Luhya
sample than among the Yoruba sample. One possible
reason for the apparent heterogeneity of the Yoruba
sample is their ancestors’ involvement in the slave trade.
Indeed, the Yoruba were one of the largest African
groups enslaved and taken by Europeans to the New
World, especially Cuba.

It would be naive to expect any single method to pin-
point all the genetic factors that were simulated, espe-
cially for private polymorphisms (i.e., polymorphisms
found only in a single family or ethnic group). For
instance, Hill et al. [9] recently were able to localize a
linkage signal for pleuropulmonary blastoma on the
basis of a few small families. However, it took a different
method (sequencing) to identify the lesions in the
responsible gene (DICERI).

The linkage results for Q2 and Q4 (not shown in the fig-
ures) did not produce any compelling evidence for the
involvement of a well-demarked chromosomal region for
these phenotypes. Fisher’s method identified a modest true
positive for Q2 on chromosome 8 at PLAT and a modest
false positive for Q4 on chromosome 20 at LOC643659.
Similarly, the GLMM identified modest true positives for
Q2 at SREBFI on chromosome 17 and at PLAT and a
modest false positive for Q4 on chromosome 5 at RNF145.

Other analyses by our group [8] indicate that the four
covariates (Sex, Age, Smoking status, and Population)
are highly significant for Q4 and explain a large propor-
tion of the variance of Q4. (Over all 200 unrelated repli-
cates, the mean R is 0.787 with a range of 0.759-
0.811.) We concluded that Q4 was primarily environ-
mentally determined but that the generating model did
include unlinked heritable factors.

Although we correctly located most of the simulated
signals for Q1, we also found a number of false-positive
signals (Table 1). Two of these (the regions on chromo-
somes 7 and 9) attained p-values of approximately 107,
which normally would not be considered strong evi-
dence of linkage. The other two signals (on chromo-
somes 8 and 17), however, would be considered
persuasive evidence of linkage if the families were
independent.

We selected the best localized of the two stronger
signals and conducted a post hoc analysis of the
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Figure 4 Subset of pedigree 5 Segment of pedigree 5 showing the cosegregation at C85775 and C135434.
.

false-positive signal (i.e., the signal centered over
CDCA2 on chromosome 8) to determine whether
there was a reasonable explanation for this strong
false-positive finding obtained in the SOLAR analysis.
Briefly, we found that this false-positive signal
resulted from a chance deviation from random segre-
gation between the A SNP at C8S775 in CDCA2 (the
false-positive signal on chromosome 8) and the C
SNP at C13S434 in FLTI (a true signal on chromo-
some 13). Eighteen informative meioses involving
these two SNPs were observed in the Yoruba kindred
(pedigree 5) responsible for this false-positive signal
(Figure 4). Under the hypothesis of linkage between
the SNPs at C8S775 and C13S434, these meioses give
rise to 15 nonrecombinants (NR) and 3 recombinants
(R). Although this deviation from the null expectation
of 9NR:9R is marginally significant by a one-sided
Fisher’s exact test (p = 0.0375), it is not persuasive
evidence in a linkage setting. However, when 50 mar-
ker-identical families are pooled, this minor nonran-
dom segregation is telescoped into 750NR:150R,
which is a highly significant deviation from the
450NR:450R expected under the hypothesis of no
linkage. We believe this is the explanation of the
false-positive signal at CDCA2.

Finally, we note that the present situation does not
reflect any situation observed in human genetics. How-
ever, these analyses are appropriate for plant and animal
genetics. In particular, homozygous inbred strains and
their F1 hybrids offer investigators the ability to observe
the characteristics of hundreds of genetically identical
organisms in a variety of contexts. Furthermore, the
analyses of monozygotic twin data and longitudinal phe-
notype data are also amenable to analysis with general-
ized linear models.
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