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Abstract

To enable the assessment of compound heterozygosity, we propose a simple approach for incorporating genotype
phase in a rare variant collapsing procedure for the analysis of DNA sequence data. When multiple variants are
identified within a gene, knowing the phase of each variant may provide additional statistical power to detect
associations with phenotypes that follow a recessive or additive inheritance pattern. We begin by phasing all
marker data; then, we collapse nonsynonymous single-nucleotide polymorphisms within genes on each phased
haplotype, resulting in a single diploid genotype for each gene, which represents whether one or both haplotypes
carry a nonsynonymous variant allele. A recessive or additive association test can then be used to assess the
relationship between the collapsed genotype and the phenotype of interest. We apply this approach to the
unrelated individuals data from Genetic Analysis Workshop 17 and compare the results of the additive test with a
dominant test in which phase is not informative. Analysis of the first phenotype replicate shows that the FLTT gene
is significantly associated with both Q1 and the binary affection status phenotype. This association was detected by
both the additive and dominant tests, although the additive phase-informed test resulted in a smaller p-value. No
false-positive results were detected in the first phenotype replicate. Analysis of the average values of all phenotype

replicates correctly identified five other genes important to the simulation, but with an increase in false-positive
rates. The accuracy of our method is contingent on correct phase determination.

Background

Modern high-throughput DNA sequencing technology
enables the detection of genetic variants at the most
fundamental level. To analyze sequence data across
large cohorts of individuals, investigators need to
develop and implement methods that will intelligently
combine the information from rare genetic variants that
may share functional relationships. Genetic Analysis
Workshop 17 (GAW17) provides an excellent opportu-
nity to test such analysis methods in the context of an
exome sequencing project [1]. The GAW17 data are
based on sequence data from the 1000 Genomes Project
pilot3 study and simulated phenotypes. The data consist
of 697 subjects from seven ethnic groups representing
African, Asian, and European populations. Exome data
are particularly interesting because exonic sequence
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variants have a high probability of influencing the
function of genes. Analysis of whole-exome sequence
data has already proved to be effective for identifying
the genetic cause of several diseases, particularly for rare
recessive diseases.

A common method for analyzing rare sequence
variants is to pool or collapse all the variants that occur
in a defined region (e.g., a gene, an exon, or a defined
moving window) and to test for the presence or absence
of any sequence variants within the region [2]. This
approach can be extended to consider only certain types
of variants, such as single-nucleotide polymorphisms
(SNPs) that result in nonsynonymous amino acid
changes or SNPs that are not characterized in catalogs
of genomic variants. The practice of collapsing rare
variants assumes that rare sequence variants occurring
within a defined region are functionally similar and can
therefore be considered a single allele, but current
collapsing procedures do not consider the haplotypic
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phase of the variants, which is important for recessive
and additive traits [2]. Autosomal recessive phenotypes
are expressed when an individual inherits two copies of
a variant allele. The probability of an additive phenotype
being expressed increases with the number of variant
alleles.

The condition of inheriting DNA sequence variants at
two sites within a gene, with each variant coming from
a different parent, is called compound heterozygosity.
Each locus is heterozygous when considered individu-
ally, but the compound effect of having variants in each
of the two copies of an autosomal gene may be func-
tionally analogous to a homozygous mutation. In a
family-based study, Pierce et al. [3] identified compound
heterozygosity as the cause of a rare recessive disease
based on their analysis of exome sequence data in which
phase could be accurately inferred.

This finding leads us to ask whether it is possible to
identify similar phenomena in a cohort of unrelated sub-
jects. We propose extending the process of rare variant
collapsing to combine the information from variants
occurring together on phased haplotypes in order to uti-
lize compound heterozygosity to inform association tests
in a population-based cohort. We present this analysis
of the GAW17 exome sequence data as a proof of con-
cept. The major obstacle to successful detection of com-
pound heterozygotes in unrelated individuals is the
difficulty in determining genotype phase for rare genetic
variants. The genetic variants found by sequencing may
be rare or even unique to a single individual. Genotype
phase for the unrelated subjects in the GAW17 data
must be inferred from linkage disequilibrium patterns,
which are difficult to assess accurately for rare variants.
Algorithmic phase estimation might introduce artifacts
in the analysis process. We therefore present results
using two different phasing algorithms to assess the
robustness of the proposed method. The results
obtained from the phase-informed analyses are com-
pared to the results obtained using a similar analysis
method that does not consider phase.

Methods

We determined genotype phase for all SNPs in the
GAW17 exome sequence data using both fastPHASE [4]
and Beagle [5]. The GAW17 data were distributed as
phased genotypes with phasing determined by fas-
tPHASE [1]. Beagle was run with the options “nsam-
ples=10" and “niterations=10.” We also determined a
single compound genotype for each gene in each of the
two phased data sets, using the letter A to indicate the
absence of a nonsynonymous variant and the letter B to
indicate the presence of such a variant. The genotype
was therefore homozygous for the variant allele (B/B) if
at least one nonsynonymous variant was found on each
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haplotype in the gene, heterozygous (B/A) if nonsynon-
ymous variants were identified on only one haplotype,
and homozygous for the common or reference allele (A/
A) if no nonsynonymous variants were found in the
gene. Mutation type (synonymous or nonsynonymous)
and the variant allele for each SNP were determined
from the annotations distributed with the raw data [1].

The compound genotype can be tested using any stan-
dard statistic for genotype associations. The collapsing
procedure identified only a small number of subject-
gene combinations with nonsynonymous variants on
both haplotypes (equating to genotype B/B), making a
recessive test uninformative. We therefore chose to con-
centrate on an additive model, for which the limited
number of B/B genotypes can still provide additional
information over methods that do not consider phase.
We used logistic regression to test for association of the
primary phenotype (Affected) with the compound geno-
types produced by each phasing method using an addi-
tive inheritance model. We ran the logistic regression
again with a dominant inheritance model to assess the
significance of collapsing rare variants within genes
without phasing. The dominant model tests for the pre-
sence of one or more nonsynonymous variants in the
gene, regardless of phase. We used linear regression to
test for associations with the three quantitative traits
(Q1, Q2, and Q4), again using additive models for the
compound genotypes from each phasing method as well
as a dominant model. The analysis concentrated on the
first phenotype simulation replicate using the entire
cohort of 697 subjects.

All tests were adjusted for population stratification
using principal components analysis (PCA). We calcu-
lated principal components using a subset of 4,360
SNPs with minor allele frequency (MAF) greater than
0.01 and maximum pairwise linkage disequilibrium of
R* = 0.5. The first three principal components were
included as covariates in the regression analyses. All sta-
tistical tests, including PCA, were performed with the
Golden Helix SNP and Variation Suite (SVS), version
7.4.0-Beta [6]. Data processing was performed using
both SVS and R [7]. We designed and executed our ana-
lysis without knowledge of the underlying phenotype
simulation parameters. Informal comparisons between
standard and phase-informed analysis methods are
made based on the total number of false-positive find-
ings and the number of simulated trait loci correctly
identified at the specified significance level.

Results

We performed tests on 2,196 genes. The Bonferroni signif-
icance threshold for this number of tests is 2.27 x 107>,
A summary of results is shown in Table 1. The FLTI gene
on chromosome 13 was significantly associated in all three
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Table 1 Results of association testing on the first phenotype replicate

Additive model, Beagle

Additive model, fastPHASE

Dominant model (no phase)

Phenotype Gene p-value Gene p-value Gene p-value
Affected FLTI* 221 %107 FLT1* 104 x 107° FLTT* 375 % 107°
GRK4 125 x 1074 GRK4 149 x 107 AHSA2 230 x 107*
AHSA2 230 x 107 AHSA2 230 x 107 B4GALT6 464 x 107*
Q1 FLTT* 170 x 107%° FLTT* 724 x 107%° FLT1* 373 x 1078
ZNF550 363 x 107* ZNF550 363 x 107* ZNF502 137 x 107*
KIAA1542 7.05 x 107 KIAA1542 715 x 107* HNRPUL1 103 x 1073
Q2 VNNT* 232%x107* SDPR 384 x 107" KRT9 867 x 107
SDPR 384 x 107 VNNT* 406 x 107 SDPR 887 x 107
RUNX3 497 x 107* RUNX3 497 x 107 TRPV6 117 x 1073
Q4 GRIA4 118 x 107* GRIA4 435 % 107* GRIA4 118 x 107*
ABLI 281 x 107* ABLI 281 x 107 ABLI 281 x 107*
GRK4 416 x 107 ICAM4 436 x 107 SLC22A1 400 x 107*

The three genes with the smallest p-values are listed for each test. Genes involved in the GAW17 phenotype simulation are marked with an asterisk.

tests for the binary phenotype (affected status). Tests
based on the Beagle phasing method identified four case
subjects and two control subjects as FLTI compound het-
erozygotes. The fastPHASE method identified three case
subjects and no control subjects as FLT1 compound het-
erozygotes (see Table 2). This small imbalance in com-
pound heterozygotes between case and control subjects
resulted in lower p-values for the additive tests (p = 2.21 x
107, p = 1.04 x 10°°) than for the dominant test (p = 3.75
x 107°). Association testing for Q1 also showed an extre-
mely strong association at FLT1. Based on these results,
we believe that FLT1 is an important factor for Q1 and
the binary affection phenotype. No other genes reached
the prescribed significance threshold for any phenotype
based on the first phenotype simulation replicate. The
strongest statistical association for Q2 was found at VNNI
(p = 2.32 x 107%, Beagle method). The strongest associa-
tion for Q4 was found at GRIA4 (p = 1.18 x 10™%, Beagle
method).

We repeated the additive association tests using the
average of each phenotype across the 200 simulation

Table 2 Genotype counts for selected genes

Gene Method Group A/A B/A B/B
FLTT Beagle Case 142 63 4
Control 412 74 2
fastPHASE Case 142 64 3
Control 412 76 0
VNNT Beagle Case 136 58 15
Control 348 123 17
fastPHASE Case 136 59 14
Control 348 123 17

A/A indicates that no nonsynonymous variants are present, B/A indicates that
nonsynonymous variants were observed on only one haplotype, and B/B
indicates that nonsynonymous variants were observed on both haplotypes.
Counts are based on two phasing methods, Beagle and fastPHASE.

replicates, with the assumption that the averaged pheno-
types would give an accurate representation of the simu-
lation parameters and the best estimate of each subject’s
disease liability. Increased phenotypic accuracy should
improve the power of the tests and reduce the stochastic
noise inherent in analyzing a single simulation replicate.
Tests were performed for the mean of the 200 simulated
values for the quantitative traits. For the binary affection
status, we counted the number of times each subject
was affected in the 200 replicates and used this count as
a quantitative response variable. A summary of the
results from these tests is shown in Table 3. Table 4
contains a list of all true-positive and false-positive asso-
ciations identified with each analysis approach. Findings
are generally similar for the various analysis approaches,
with the notable difference that both of the phased
approaches correctly identify the KDR gene as associated
with Q1, whereas the unphased approach did not find
this gene.

Discussion and conclusions

The intent of this analysis was to assess the feasibility
of incorporating compound heterozygosity into an
association test based on exome sequence data with
unrelated subjects. Our approach used a simple
method to collapse nonsynonymous variants on phased
haplotypes within genes, and we compared results of
an additive model incorporating compound heterozyg-
osity with an analogous dominant model for which
phase was not informative. We used two phasing
methods to ensure that our approach was robust to
phase estimation artifacts and found the results to be
fairly consistent for the most significant genes. It is
important to note that phase information was not
included in the phenotype simulation model. This ana-
lysis is only a proof of concept. The additive tests
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Table 3 Results of association testing for averaged phenotypes across all 200 simulation replicates

Additive model, Beagle

Additive model, fastPHASE

Dominant model (no phase)

Phenotype Gene p-value Gene p-value Gene p-value
Affected FLT1* 470 x 1078 FLTT* 1.08 x 1077 FLT1* 290 x 1077
PIK3C2B* 375 x 107 HPDL 544 x 107 HPDL 544 x 107
HPDL 544 x 107 GRIA4 943 x 107 GRIA4 943 x 107
Q1 FLTT* 743 x 107 FLT1* 961 x 1077 FLT1* 204 x 1078
SLC2A13 722 %1078 SLC2A13 302x 1077 SLC2A13 722 %1078
KDR* 145 % 10°° KDR* 112x10°° PSKH2 226 %x10°°
Q2 VNNT* 198 x 107'° VNNT* 942 x 107" VNNT* 589 x 107"
RARB* 764 x 107 RARB* 764 x 107 RARB* 764 x 1077
TXNLT 126 x 107° TXNLT 125 % 107° SIRTI 795 x 107/
Q4 ICAMA4 335x 107 GLP2R 138 x 107* LP2R 6.22 x 107
GLP2R 362 x 107* GOLGAT 225 % 107 YP3A43 111 x 107*
PBX3 579 x 107* ICAMA4 335 x107* LC22A1 222 x107°

Tests were run using the average phenotype values from the 200 simulation replicates. The three genes with the smallest p-values are listed for each test. Genes

involved in the GAW17 phenotype simulation are marked with an asterisk.

using phase information resulted in lower p-values for
some genes, but not all. The true phase of the SNPs in
these data is not known, but if we assume that our
phasing methods are accurate, our results show that
additional power can be gained in some situations by
incorporating compound heterozygosity in a large-scale
analysis of sequence data.

Although it is discouraging that we detected only one
true positive association in the first phenotypic replicate,
it is also encouraging that there were no false-positive

Table 4 Genes found by each analysis approach

associations. (We should note that we found numerous
false-positive associations in the preliminary results
before the PCA correction was incorporated. For exam-
ple, the uncorrected analysis for Q1 resulted in false-
positive associations with five genes in addition to the
one true-positive association with FLTI1.) As expected,
analysis of the averaged phenotypes resulted in greater
statistical power but also in an increase in false posi-
tives. No false associations were detected for Q4 or the
binary affection trait, but there were numerous false

Analysis of first simulation replicate

Analysis of average values of all 200 simulation replicates

Trait Additive model, Additive model, Dominant model (no  Additive model, Additive model, Dominant model
Beagle fastPHASE phase) Beagle fastPHASE (no phase)
Affected FLTT* FLTT* FLTT* FLTT* FLTT* FLTT*
Q1 FLTT* FLTT* FLTT* FLTT* FLTT* FLTT*
KDR* KDR* SLC2A13
SLC2AT3 SLC2A13 PSKH2
MAP3K12 MAP3K12 LIMK2
PATE PATE JAKT
JAKT JAKT
Q2 None None None VNNT* VINNT* VNNT*
RARB* RARB* RARB*
SIRTT* SIRTT* SIRTT*
GCKR* GCKR* GCKR*
TXNLT TXNLT TXNLT
OR5B2 OR5B2 OR5B2
MAF MAF MAF
PCDHGB2 PCDHGB2 PCDHGB2
C30RF30 C30RF30
TRPV6
Q4 None None None None None None

Given the Bonferroni significance threshold for 2,196 tests (p < 2.27 x 107°), we show the genes identified as significant for each phenotype using each analysis
approach. Genes involved in the GAW17 phenotype simulation are marked with an asterisk.
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positives for Q1 and Q2. The false-positive rates were
similar for the phased and unphased approaches.

We believe that the major weakness of our method
lies in the difficulty of inferring genotype phase for rare
SNPs. Most of the nonsynonymous variants in the data
were very rare. Out of 13,572 total nonsynonymous SNP
variants in the data, 5,924 occurred only once and
another 1,505 occurred only twice. The greatest cer-
tainty for phase determination is in the genes with
numerous and relatively common variants. Genes with
numerous variants also have additional statistical power
to detect associations using the collapsing approach that
we followed. As such, it is not surprising that most of
the genes we identified as being associated harbor multi-
ple variants with relatively high frequencies. Although
the two phasing methods we used generally resulted in
similar compound genotypes (Table 2) and similar sta-
tistically significant findings, there were numerous
inconsistencies, especially with regard to the rarest
SNPs. We identified 119 instances of a subject having
exactly two nonsynonymous personal variants (variants
unique to that subject’s sequence) within one gene. Bea-
gle determined that for 68 of these 119 subjects, the var-
iants were on opposite haplotypes, resulting in a
compound heterozygote. In contrast, FastPHASE
resulted in compound heterozygote genotypes for only
51 subjects.

In practice, we expect that our method will have the
greatest value when applied to low-frequency variants.
High-frequency variants might confound the collapsing
process and hide the influence of rare deleterious var-
iants. We expect sequencing data sets to remain small
in the near future, which means that inferring phase
from observed linkage disequilibrium patterns will be
especially difficult for common and rare variants alike.
We hope that future advances in sequencing technology
will make it possible to assess phase more accurately or
even to observe phase directly. This could be made pos-
sible by single-molecule analysis, extended read lengths,
or advanced sequence capture technology. As DNA
sequencing technology continues to improve, we antici-
pate that the methods we describe here will become
useful for analysis of sequence data in large cohorts of
unrelated subjects. Our method may also be adapted for
use in analysis of rare SNPs assayed by modern array-
based SNP genotyping platforms.
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