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Abstract

The upcoming release of new whole-genome genotyping technologies will shed new light on whether there is an
associative effect of previously immeasurable rare variants on incidence of disease. For Genetic Analysis Workshop
17, our team focused on a statistical method to detect associations between gene-based multiple rare variants and
disease status. We added a combination of rare SNPs to a common variant shown to have an influence on disease
status. This method provides us with an enhanced ability to detect the effect of these rare variants, which,
modeled alone, would normally be undetectable. Adjusting for significant clinical parameters, several genes were
found to have multiple rare variants that were significantly associated with disease outcome.

Background

Recent technological advances have made querying the
importance of genetic factors on the occurrence of dis-
ease severity possible. Hundreds of published studies
have acknowledged associations between certain genes
and various medical conditions. Newer advances in gen-
otyping technology have allowed researchers to deter-
mine even more precisely which genetic base pair may
be a marker for the mutation responsible for causing a
disease by looking at single-nucleotide polymorphisms
(SNPs). SNPs are DNA sequence variations that occur
when a single nucleotide (A, T, C, or G) in the genome
is altered. Each individual has many SNPs that together
create the unique human DNA pattern [1]. These base
differences usually have a minor allele frequency (MAF)
of 1% or more; SNPs with MAFs less than 1% are
known as rare [2]. Previously, because of the popular
common disease/common variant hypothesis, which
assumes that common diseases are caused by common
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variants with small to modest effects [3], and because of
the lack of proper technology to accurately genotype
rare variants, most association studies have focused on
common variants. The near complete 1000 Genomes
Project will allow for more accurate genotyping of the
so-called rare variants and, as a result, for consideration
of rare variants as possible causes of disease [4].

A change in thought has occurred to increase the
importance of rare variants in disease susceptibility [5].
Although several common SNPs have shown significant
associations with diseases, these effect sizes have always
been small, contributing to the idea that there must be
some causal factor in the previously undiscovered rare
variants [5]. Several known genetic diseases, such as
schizophrenia and type 2 diabetes, have turned up only
a few links in the form of the common variants, and it
is now thought that common variants could be picking
up a diluted signal that is instead caused by neighboring
rare variants [5]. Few statistical methods exist for ana-
lyzing the role of rare variants, with most methods
resulting in low power [3], and it is imperative to
develop new methods to analyze these data. Because the
Genetic Analysis Workshop 17 (GAW17) data set is
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dominated by rare variants (about 74%), the goal of this
study is to investigate the potential for combinations of
rare variants to strengthen the association between com-
mon variants and disease.

Methods

The GAW17 data set consists of 24,487 SNPs on 22
chromosomes for 697 unrelated individuals. Thirty per-
cent of the individuals are known to be affected with
the disease, and individual quantitative and binary dis-
ease traits, Age, Sex, and Smoking status were simulated
200 times. The underlying simulation model is pre-
sented by Almasy et al. [6]. We had no knowledge of
the genes simulated to be associated with disease out-
come when developing and testing our method.

We chose significant clinical parameters by fitting a
multivariate logistic regression model with all the possi-
ble covariates (Age, Sex, Smoking status, and Ethnicity)
and performing backwards selection. Significance was
determined by calculating the 95% percentile intervals
based on the 200 replicates and choosing only those
covariates for which the percentile interval did not
include 0.

We first tested for Hardy-Weinberg equilibrium
(HWE) in both affected and unaffected populations over
all 200 phenotype replicates [7]. An adjusted p-value of
107" was used to correct for multiple testing in light of
the fact that many of the SNPs are correlated. Those
SNPs that failed the HWE test in both subpopulations
in at least 95% of the replicates were eliminated from
further analysis because these SNPs were thought to be
privy to genotyping errors.

Because the frequency of each of the rare variants in
this data set is so low (40% of the SNPs have only a sin-
gle copy of the minor allele out of the 697 observations),
attempting to model the relationship between each rare
SNP and the disease outcome is not feasible. Even
attempting to combine all the rare SNPs within a gene
would not be possible because few genes have a large
number of rare SNPs (Table 1). Under these conditions,
the models would fail to converge in many of the phe-
notypes. Therefore we decided to test combinations of
multiple rare variants with one common variant in a
gene. Our interest lies in identifying groups of rare

Table 1 Breakdown of number of rare SNPs per gene

Number of rare SNPs Number of genes

None 691
Between 1 and 5 1,601
Between 6 and 10 338
Between 11 and 50 502
Between 51 and 100 29
More than 101 6
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SNPs that will better predict the disease when added to
the common SNP than in simply identifying the com-
mon SNP alone.

For each gene g, we consider common SNPs ¢; (j = 1, ...,
ng) and rare SNPs ry (s = 1, ..., ng), where n, and n, are
the number of common and rare SNPs on gene g, respec-
tively. For all SNPs, we assume a dominant model in
which a SNP is coded 1 when a minor allele is present
and 0 otherwise. Because of the low frequency of rare
SNPs, we thought that the dominant model would provide
the best power.

For individual i, i = 1, ..., 697, we define disease status as:

Y. =

1

1)

1 for affected individual 1,
0 otherwise.

For each c; on gene g, we fit the following multivariate
logistic regression model on phenotype k (k = 1, ..., 200):

log[ Pk

-, ]: Boje+ Bipleso t B2 (Smoking status) + B3 (Age),  (2)

where P = P(Y = 1) and 1, >01is a binary indicator
variable representing the presence of the minor allele in
common SNP c;.. The 200 coefficients B3, ..., B1,200 are
recorded.

We create a new indicator variable z to measure the
presence of rare variants within a gene:

z2=1,.9, m=r+--+1, . (3)

By narrowing the search to only those common var-
iants that show reproducibility over the 200 replicates at
the 0.1 significance level (which would imply more
stable coefficient estimates), we then fit a new multivari-
ate logistic regression model with a binary indicator
variable that represents the presence or absence of any
minor allele within the gene:

P, .
108( 1 kp ]: Yoje T Y11 (c )50 + 72,k (Smoking status) + 3 ,(Age). (4')
— Lk

We use the binary approach to increase the power to
detect an association resulting from the low frequency
of the minor alleles. We then compare the 200 coeffi-
cients 1.1, ..., Y1,200 by means of a one-sided paired
t test to B1,1, ..., Bi20o to ascertain whether there is a
consistent departure from the null hypothesis that:

|ﬁ1,k | 2 | Y1k | vk (5)

If p < 0.05, then adding the rare variants to the com-
mon variant significantly increases the signal of the
effect of the gene on disease. Therefore these rare var-
iants must be associated with the disease.



Sykes et al. BMIC Proceedings 2011, 5(Suppl 9):597
http://www.biomedcentral.com/1753-6561/5/59/597

If no associations are found, we remove one rare SNP
from the definition of Eq. (3) and recalculate the coeffi-
cients from Eq. (4) as before. This method is used to
determine whether or not no association was detected
because of too much noise resulting from the addition
of too many rare variants. This method can be general-
ized through an iterative process by removing one rare
SNP at a time until only a single rare SNP remains.

Results

The initial set of 24,487 SNPs was reduced to 24,211
because 276 SNPs failed the HWE assumption. Ethnicity
was categorized into three dummy variables representing
individuals of African, Asian, and European descent. The
covariates Age and Smoking status were established as
the only clinical parameters for this data set (Figure 1).
Any associations between SNPs and disease status were
adjusted for these two covariates.

After HWE elimination, we were left with 3,167
genes over the 22 chromosomes. Of these 3,167 genes,
1,718 did not have any common variants or had less
than two rare variants and so were excluded from the
analysis because this is our primary interest. To elimi-
nate the possibility of adding too much noise by creat-
ing a combination of many rare SNPs, we further
restricted the analysis to those genes that contained
fewer than 16 rare SNPs. Thus we were left with 829
genes to explore.

Our results show that adding multiple rare variants to
common SNPs already associated with disease at the 0.1
significance level can greatly improve the ability to detect
causes of disease (Table 2). We calculated p-values from
a one-sided paired ¢ test to compare the 200 S coeffi-
cients to the 200 y coefficients and used a p-value of
0.001 to determine significance [8]. For several of the
genes, the signal of association became even stronger
with the removal of one or two rare SNPs (Figure 2). In
some cases, we discovered that larger combinations of
rare SNPs were actually more significant, indicating that
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an optimal combination of rare and common SNPs could
be found with this method (Table 2).

When one or two rare SNPs were removed from the
definition of Eq. (3), some genes that had not been iden-
tified by our first pass displayed an increased effect on
disease (Table 2, last three rows). This suggests that
adding the combination of rare SNPs to a common SNP
adds information to the model and helps to better
explain the relationship between gene and disease.

Discussion and conclusions

By taking advantage of all 200 phenotype replicates, we
were able to simulate a posterior distribution for the
underlying true relationship between genes and disease
status, thereby inherently validating our method. When
working with real data, investigators will not be able to
use the replications to calculate p-values. Therefore we
can apply the sample randomization technique outlined
by Guo et al. [9]. This method has the following steps:
(1) Calculate the coefficient for each common variant in
each gene from a logistic regression model; (2) shuffle
the common SNPs across the genome to generate a per-
muted data set; (3) calculate the coefficient from a logis-
tic regression between common variant and disease; (4)
repeat steps 2 and 3 1,000 times to obtain a null distri-
bution of coefficients; and (5) determine which common
variants are significant (at @ = 0.1) by calculating the
percentage of coefficients from the null distribution that
are greater than the observed coefficient. This percen-
tage is our p-value. Finally, adding all the rare SNPs to
the common variant, we repeat steps 1-5 to determine
which rare SNPs significantly improve the association
from the common variant alone.

Although our study focused on binary disease outcome,
our method can also be applied to continuous or time-
to-event outcomes. The dominant model assumption for
the SNPs could also be adjusted to use additive or reces-
sive models. Our method improves on the collapsing
method introduced by Li and Leal [3] by separately
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Figure 1 Plot of the coefficients over all 200 phenotypes shows that Smoking status and Age have significant effects on disease
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Table 2 Adding a combination of rare SNPs to a common SNP significantly increases the signal of association with disease

Gene Common SNP Number of rare SNPs p-value SNP(s) removed p-value
MAP3K6 C151886 4 213x 1078 C1518877 213 x 1078
PTK2B 85911 9 108 x 1077 (85936 29 %107
85900 512 x 1077
(85900, C85908 893 x 1071°
ETV6 C125860 2 553 x 1077 125863 3x 107"
125861 6x107*
BRCAT C175299% 13 154 x 1076 C1753009 197 x 1077
C1753002, C1753009 101 x 1077
BRCAT C1753006 13 445 x 107" C1753002 288 x 107"
BRCA1 C1753010 13 727 x 1071° C1753002 673 x 1072
BRCAT C1753014 13 533 x 107 C1753002 504 x 107"
BRCAT C1753016 13 131 x 1070 C1753009 875 x 107"
LOC645118 1952844 1 NS 1952846 9x 10"
TNKT C175511 3 NS C175515, C175521 478 x 107°
VNNT 655380 4 NS 655377, C655379 15 %107

Removing one or two rare SNPs can make this association even stronger. NS, not significant at the 0.001 significance level.

considering common variants shown to have disease
influence and by adjusting for other factors.

In the interest of time and computational abilities, we
limited our analysis to those genes with less than 16
rare SNPs. Important associations may occur in genes

with greater than 16 SNPs. In the future it may also be
of interest to consider separately those SNPs that are
synonymous and nonsynonymous or to include rare
SNPs that fall just outside a gene in a larger genomic
region in, say, a pathway-based analysis. Our analysis
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Figure 2 Addition of rare SNPs increases signal for detection. (a) For gene MAP3K6, a combination of four rare SNPs and one common SNP
increases the signal. (b) For gene BRCAT we show the coefficient differences between various rare and common SNP combinations and a
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Table 3 Gene-based comparison of our method with
simulated answers

Our method Total
Answers Selected Not selected
Simulated 2 22 24
Not simulated 9 793 805
Total " 815 829

was stopped before considering a maximum removal of
two rare SNPs from the combination of all rare SNPs in
one gene. A more exhaustive search could uncover new
relationships. Our intention was to conduct a proof of
principle analysis to exhibit the merits of this method in
finding rare SNPs associated with disease.

After the GAW17 conference, we compared the per-
formance of our method to the simulated answers. For
the correctly identified gene PTK2B, removal of simu-
lated SNP C8S900 actually improved the disease associa-
tion. This could be a result of high correlation with the
other simulated SNPs for that gene. Table 3 shows that
our method detected a large number of false positives
and yielded a sensitivity of only 8.3%. However, our
method had quite a high specificity rate of 98.5%. It
must be noted that underlying correlation could create
hidden relationships not specified in the simulated
model.
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