Wilson et al. BMC Proceedings 2011, 5(Suppl 9):598
http://www.biomedcentral.com/1753-6561/5/59/598

BMC
Proceedings

PROCEEDINGS Open Access

Finding genes that influence quantitative traits
with tree-based clustering

lan J Wilson’, Richard AJ Howey, Darren T Houniet, Mauro Santibanez-Koref

From Genetic Analysis Workshop 17
Boston, MA, USA. 13-16 October 2010

Abstract

We present a new statistical method to identify genes in which one or more variants influence quantitative traits.
We use the Genetic Analysis Workshop 17 (GAW17) data set of unrelated individuals as a test of the method on
the raw GAW17 phenotypes and on residuals after fitting linear models to individual-based covariates. By
performing appropriate randomization tests, we found many significant results for a proportion of the genes that
contain variants that directly contribute to disease but that have an increased type | error for analyses of raw
phenotypes. Power calculations show that our methods have the ability to reliably identify a subset of the loci
contributing to disease. When we applied our method to derived phenotypes, we removed many false positives,
giving appropriate type | error rates at little cost to power. The correlation between genome-wide heterozygosity
and the value of the trait Q1 appears to drive much of the type | error in this data set.

Background
Multilocus approaches to associations between variants
and traits are likely to be advantageous when rare sin-
gle-nucleotide polymorphisms (SNPs), which have an
undetectable effect on a trait when considered singly,
can explain a large proportion of the genetic variance at
a locus when they are taken together [1-3]. Investigators
have taken a gene-centric approach to association test-
ing using, for example, entropy [4], weighted sums [2,3],
and distance measures [5] to summarize information
across different sites. Our approach uses data-driven
tree-based clustering to combine genotypes across mul-
tiple loci. The tree structure makes our algorithm an
efficient way to search through SNPs that best explain
the difference in quantitative trait values. Our tree con-
struction method ensures that genotypes that differ by a
mutation at a single locus always cluster on the tree and
gives an easily interpretable visualization of the SNPs at
a locus that affects the trait.

Sevon et al. [6] developed a method, TreeDT, that
uses lexical sorting of haplotypes to produce a tree-
based test of association. We use the idea of lexical
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trees but extend it by using multilocus genotypes and by
working with quantitative traits rather than case-control
status. The method can be used on haplotypes, but
using multilocus genotypes is a natural extension when
we are interested in the effects of rare variants, because
these variants are unlikely to be present in two copies
and phasing of such variants is much more uncertain
[7]. We develop this method to work with rare variants
by using recoded multilocus genotypes rather than hap-
lotypes and by extending the statistics used to look for
associations between quantitative traits and the tree
structure. Every node on the tree represents a multilo-
cus genotype that appears one or more times in the
population. Shorter multilocus genotypes are situated at
internal nodes of the tree. This method provides a pic-
torial summary of the information contained in a region
at different genes along the chromosome. The methods
presented here are implemented both as a stand-alone
program and as an R library [8].

Methods

Data preparation

For these analyses we use the unrelated individuals geno-
type data from Genetic Analysis Workshop 17 (GAW17);
these data consist of 697 individuals genotyped at 22,487
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sites. The data generation is detailed by Almasy et al. [9].
For tree analyses, we recode these genotype data as bin-
ary multilocus genotypes (BMGs) by coding homozygotes
for the common allele as 0 and all other genotypes as 1,
so that the BMG of an individual at a gene is a vector of
0’s and 1’s. This recoding is illustrated with example data
in Table 1. We perform two sets of analyses: all prelimin-
ary work is done on the first phenotype data set, and
subsequent power calculations are performed on all 200
data sets.

Principal components and individual variation

Loadings from principal components analysis (PCA)
were calculated for allele counts for all genotype data
using standard R functions. Plots of loadings are shown
in Figure 1. The first principal component (PC), explain-
ing 35% of the variance, does not resemble typical PCA
results because it does not produce a separation into the
three main population groupings that is seen in other
studies with comparable samples [10], whereas rotations
2 and 3 effectively separate the individuals into three
groups. Rotations 1 and 4 are more closely related to
the overall variation seen in a sample (as measured by
average heterozygosity) than to differences between
populations, as seen for SNP array data [10].

Derived phenotype data

To incorporate suspected relations between Q1, Q2, Q4,
and the other explanatory variables (Age, Smoke, Sex,
and PC loadings), we calculate two additional derived
phenotypes for each of Q1, Q2, and Q4. We construct
the first residual phenotype by fitting the linear model:

Q; = Bo + B1(Age) + B,(Smoke) + B5(Sex) +¢&, (1)

Table 1 Genotype frequencies for example data set

Multilocus genotype

Allele count Code Control counts Case counts
0-0-0-0 0-0-0-0 27 18
0-0-0-1 0-0-0-1 7 8
0-0-1-0 0-0-1-0 4 13
0-0-2-0

0-0-1-1 0-0-1-1 0 6
0-0-1-2

0-0-2-1

0-0-2-2

0-1-0-0 0-1-0-0 9 4
0-2-0-0

1-0-0-0 1-0-0-0 4 0

The example data set is shown in Figure 2.
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where & ~ N(0, 6°), using backwards stepwise selection
on the explanatory variables and using the Bayesian
information criterion [11] to decide which variables are
retained. After model fitting, we use the standardized
residuals as phenotypes. We calculate a second set of
derived phenotypes in the same way but with the initial
model also containing the first six variable PC loadings,
which we label PC1, ... , PC6.. All of this model selec-
tion is done on phenotype data set 1. We then fit the
selected models individually to each of the 200 replicate
data sets and use their standardized residuals as pheno-
type data. All calculations are performed using standard
R functions.

Building trees from genetic data

Consider a set of BMGs for a gene (here we could also
use haplotypes if we had accurate phasing) as strings of
0’s and 1’s. Put all the individuals at the root of a tree.
Now consider the variant positions in that gene one
position at a time from left to right or using some other
ordering. For the first position, all those samples with a
0 at the position are put on the left branch of the root,
and all those with a 1 are put on the right branch. The
two leaves of this tree now contain BMGs of length
one 1. Now step through all the other variable positions
for each leaf. If there is any variation at the current
position among the individuals at a leaf, the leaf is split
in two, with all individuals with a 0 on the left branch
and all individuals with a 1 on the right branch. Repeat
for all the variable sites at the gene. After k sites the
leaves contain BMGs of length k. This procedure is illu-
strated in Figure 2. The multilocus genotypes that map
to multilocus genotype codes for our example data are
shown in Table 1.

Test statistics
Obtaining a tree test statistic is a two-stage process. First,
we require values of partial test statistics defined on the
leaves and internal nodes of our tree. A variety of test
statistics are available, but we are restricted to those that
depend only on values of a trait at a node and its descen-
dants. Using information at ancestral nodes or on nodes
on other branches of the tree (such as other individuals
from the same population) is not possible within this fra-
mework. We use the term disjoint here for a set of nodes
in which none of the nodes is the ancestor of another.
For further details see Sevon et al. [6].

Although many partial test statistics are possible, we
take a simple one, the z score:
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Figure 1 Scatterplots of principal component loadings and summary statistics. Heterozygosity is calculated by averaging over all sites in
an individual. Values in the bottom two plots are Pearson correlation coefficients.

where x;, j = 1, ..., n;, are the values of the trait at
node i and x and s are the sample mean and standard
deviation, respectively, of the trait over all individuals.
Two trees with the respective z scores at the nodes are
shown in Figure 3.

The QTLTree test statistic over the whole tree, S, is
defined as the maximum value of:

k
D &) )
i=1

where the summation is over m disjoint nodes where
m < k, and fis some function. For our analyses, we take:

k
Si= |zl (@)
i=1

that is, f(y)=|y|, but other approaches are possible
and implemented in our program. As a side effect of the
calculation, we obtain intermediate values for S, j = 1,
..., k — 1. Typically for our tests, we take k = 10.
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Figure 2 Example of multilocus genotype tree. This tree is constructed by considering sites left to right along the binary multilocus
genotype (BMG). The root of the tree contains all 100 individuals. As we consider successive SNPs, all nodes containing both 0 and 1 individuals
at the SNP are split, with individuals carrying a 1 put on the top branch and those carrying a 0 on the lower branch. The leaves of the tree
(yellow background) carry full-length BMGs, and internal nodes (blue) carry partial BMGs, with sites that can carry 0 or 1 labeled with a hash (#).
Case and control counts are given by numbers above and below the node label, respectively.
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Significance testing

The null distribution of Sy is not available. Because the
GAW17 data were sampled from different populations,
a straightforward randomization was not appropriate
and individuals were randomized within populations;
that is, the traits were randomly relabeled within each
population so that the mean and standard deviation of
the traits stayed the same within populations across
replicate permutations. The seven different populations
used were Luhya, Yoruba, Japanese, Denver Chinese,
Han Chinese, CEPH (European-descended residents of
Utah), and Tuscan.

We calculate statistical significance with 10° rando-
mized replicates per gene for the phenotype data set.
We perform power calculations over multiple data sets
using 10° replicate simulations over all 200 data sets.
One hundred thousand replicate permutations for all
3,205 genes of a single data set typically takes about 60
minutes, and these calculations are easy to perform in
parallel, making them feasible for whole-genome data.
The R package QTLTree [8] is available from IJW’s
website (http://www.staff.ncl.ac.uk/ij.wilson).

Results

Model choice derived phenotypes

The backwards model selection results in three additional
derived phenotypes: Q1A, the residuals after fitting Age
and Smoke; Q1B, the residuals after fitting Age + Smoke
+ PC1 + PC4; and Q4A, the standardized residuals after
fitting a linear model with predictors Age + Sex + Smoke
to Q4. No nonconstant terms were kept in models for
Q2, and no extra PC terms were kept for Q4.

Analysis of data set 1

Table 2 gives the genes with the highest significance
levels for analyses of the three Q1-related traits and Q2.
Although for the uncorrected trait the gene with rank 1
is true, the rest of the top 10 ranked genes are all unre-
lated to the trait and are significant after Bonferroni cor-
rection (p < 5 x 107°). No improvement is seen after
correcting for Age and Smoke. Only the derived trait
Q1B behaves well. For Q2 there are no false positives
after strict Bonferroni correction. Quantile-quantile plots
of p-values from QTLTree tests of Q1, Q2, Q1B, and Q4
are shown in Figure 4. The p-values of phenotype Q4
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Figure 3 Genotype trees underlying two disease positions. Binary multilocus genotype trees underlying genes affecting phenotype Q1 from
data set 1. ARNT is not significantly associated with Q1 using QTLTree, whereas KDR is associated. Numbers in boxes are values of the z statistic
at the node; counts of individuals at the leaf are to the right. Counts for internal nodes can be calculated by looking at descendants. Colored
boxes indicate evidence for association with phenotype within the tree: red, z > 2.0; pink, 1 < z < 2; and green, =2 < z < —1. Uncoloured boxes

KDR

follow their expectations well, whereas those for Q1
approach acceptability only when using phenotype Q1B,
corrected using PC loadings. Results from phenotype Q2
show some deviation from the expected at low p-values,
but these do not seem to be due to true associations
from results in Table 2.

Power calculations

Power calculation results are summarized in Figure 4.
There is some power to detect true associations at genes
influencing traits Q1 and Q2, but not for all genes. Using
the derived trait Q1B, which incorporates PC loadings,
increases the true-positive rate at low false-positive rates.
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Table 2 Summary results for data set 1

Q1 Q2

Gene Q1rank Q1A rank Q1Brank p-value for Q1 p-value for Q1A p-value for Q1B Gene Q2 rank p-value for Q2
FLTT* 1 1 1 0.0000 0.0000 0.0000 LRRC18 1 0.000441
ZNF91 2 5 6 0.0000 0.0000 0.0002 WDFY4 2 0.000441
FLI22662 3 22 900 0.0000 0.0000 0.2604 SPAGS8 3 0.000453
ZNF454 4 3 27 0.0000 0.0000 0.0044 RARB* 24 0.004243
KRT3 5 12 134 0.0000 0.0000 0.0285 GCKR* 28 0.005489
MAP2K6 6 16 834 0.0000 0.0000 0.2360 VNNT* 42 0.00835
ZNF568 7 4 118 0.0000 0.0000 0.0244 BCHE* 358 0.063238
BRCA1 8 15 58 0.0000 0.0000 00115 SIRTT* 382 0.068709
RGPD8 9 7 140 0.0000 0.0000 0.0301 INSIGT* 391 0.07131
KDR* 14 2 15 0.0001 0.0000 0.0018 VINN3* 639 0.128922
VEGFC* 15 238 26 0.0001 0.0090 0.0044 LPL* 1,443 0.382003
VEGFA* 157 197 282 0.0086 0.0062 0.0717 PLAT* 1,833 0514235
FLAVL4 312 729 1,248 0.0281 0.0983 0.3655 VIWF* 2,071 0.59704
ARNT* 653 1,086 983 0.1025 0.2037 0.2872 PDGFD* 2426 0.716842
FLT4* 1,352 788 1,757 03187 0.1173 0.5233 VLDLR* 2,691 0811708
HIFTA* 1,563 998 1,660 0.3930 0.1814 04937 SREBFT* 2,891 0.883901

All p-values based on 10° randomizations. Ranks are the rank of the genes when ordered by p-value. Genes with asterisks indicate true associations with trait.
Genes were chosen on the basis of rank for Q1 analyses or of being true.

Using five disjoint test statistics increases the power over  derived traits. This table also informs us that although
using a single statistic. Further test statistics did not phenotype Q4 is well behaved for data set 1, across all
further increase power (results not shown). Table 3 shows  data sets there is a tendency for false-positive results to be
that there is a tendency for false positives to be found at  seen in the same genes. Using the residual derived pheno-
the same genes over all replicate simulations, even for the  type Q4A corrected this problem (results not shown).
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Figure 4 Power calculations. The left-hand plot gives a quantile-quantile plot for p-values from the analysis of data set 1. The solid line is the
expected result. In the right-hand panel true-positive proportions are plotted against false-positives for varying significance level. This
summarizes the results over all 200 replicate data sets, with solid lines denoting test statistics from five disjoint nodes (Ss) and dotted lines
denoting the maximum node value (S;).
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Table 3 Summaries of repeatable significant results over 200 data sets

Q1 Q1A Q1B Q2 Q4
Gene n < 0.01 Gene n Gene n Gene n Gene n
FLT1 200 FLT1 200 FLT1 191 VNN1 67 BUDI3 170
FLI22662 192 KDR 200 KDR 135 OR5B2 48 SLC22A1 154
ZNF713 188 TERT 197 MAP2K7 135 PTGIS 39 SEPT1 129
KDR 187 ZNF713 196 FOXO3 133 ZNF568 38 CYP3A43 116
FOXO3 170 C10RF147 194 HSZFP36 94 METTL2B 32 TOB2 115
KRT3 170 FLI22662 194 EPHB1 90 GCKR 32 NF2 85
KRT75 164 OR6C4 192 LRP4 88 MUCT9 31 NUP188 83
GRK1 162 PRKCH 192 RBM6 86 UNC458 31 OR10T2 68
E2F2 157 ALX4 190 GRIA4 79 ZNF518B 31 C160RF55 67
CETP 155 E2F2 189 FNDC3A 78 VNN3 29 ICAMA4 65
TERT 155 ETVE 189 HIST2H2BE 73 SIRT1 25 LOC1001316 65
MAP2K6 154 KRT75 189 HAS3 72 BCHE 22 MYCBP 65
VEGFC 45 VEGFC 65 VEGFC 65 SREBF1 16 WBP1 65
ARNT 38 HIF1A 51 VEGFA 19 LPL 14 MUC3A 61
VEGFA 32 FLT4 51 ARNT 18 RARB 11 CNGA3 58
FLT4 51 VEGFA 32 FLT4 7 PDGFD 8 GTSET 58
ELAVL4 15 ARNT 37 HIF1A 7 VLDLR 7 MMP27 58
HIF1A 12 ELAVL4 12 HIF3A 2 VWF 3 PIK3R2 58
HIF3A 3 HIF3A 2 ELAVL4 2 INSIG1 1 TAARS 56

All significant results are based on a noncorrected significance level of 0.01. Numbers are the number of replicates where a gene was found to be significant (out
of 200). Columns show the top results and those from true genes (bold). The maximum number of significant tests for Q4A was 8. All significance tests are based

on 10° permutations.

Discussion and conclusions
The methods in QTLTree described here are a quick
way to collapse the information contained in genotypes
within a gene into a form that allows quick calculation
of an optimum set of SNPs or combination of SNPs.
Within the R environment, the method can also be used
to interactively explore the sets of SNPs that may be
affecting a quantitative trait. The methods seem to be
able to detect an appreciable proportion of genes under-
lying variation in phenotypes, although the large number
of detected loci that do not contribute to variation using
the raw trait data is worrying, because within-population
randomization should account for any simple differences
between populations. Because different levels of struc-
ture exist within the data and because gene-environ-
ment-region interactions are possible (e.g., the age
structure differs between populations, and the values of
the Q1 and Q4 phenotypes depend on age), we
attempted a further level of correction. Using derived
phenotypes after regressing on correlated phenotypes
and PC loadings improved the type I error rates while
not reducing the power for realistic false-positive rates.
Plots of PC loadings produced some unusual results
that looked different from those from SNP arrays [8].
These are also seen in the correlations of Table 4,
where PC loadings 1, 2, and 4 are significantly corre-
lated with phenotypes Q1 and Q4. Because, from the
answers to the GAW17 simulation, the sequenced genes

have no direct effect on phenotype Q4, the association
of Q4 with PC loading 2 is most likely through both
being associated with age. The correlation disappears
when we take the residual after correcting for age, sex,
and smoking status. Associations with the first loading,
which explains more than 30% of the variation in the
sample, are more difficult to explain because the first
loading is correlated with the average heterozygosity
(Figure 1; Table 4). Although this may reflect an under-
lying variation in heterozygosity between people, it
seems more likely that it reflects differences in coverage

Table 4 Correlations between population statistics and
phenotypic traits

Trait Average Rotation Rotation Rotation Rotation
heterozygosity 1 2 3 4

Age 0.02 0.14 0.16 0.07 0.06
Smoke -0.01 —-0.04 -0.05 0.04 0.01
Q1 0.16 -0.15 —-0.07 0.05 -0.19
Q2 0.05 —0.01 0.01 —0.04 —0.05
Q4 —-0.06 —-0.09 -0.12 -0.07 -0.03
Q1A 0.17 -0.21 -0.12 0.02 -0.24
Q1B 0.02 0.00 —-0.01 —-0.01 0.00
Q4A -0.10 0.06 0.02 -0.02 0.06
Affected 0.14 0.02 0.09 0.07 —0.05

Correlations are Pearson product moment statistics. Results significant at the
0.1% level are indicated in bold. Definitions of residual phenotypes Q1A, Q1B,
and Q4A are given in the text.
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in sequencing samples, because samples with higher
coverage tend to have more variants called.

The strong false-positive signals with the raw data lead
us to ask, can the difference in the number of variable
sites between individuals explain the inflated errors in
Q1? To test this for phenotypes Q1 and Q2, we created
data sets with just the SNPs that affected disease and all
non-disease-causing SNPs. The correlation across indivi-
duals between average heterozygosity for SNPs affecting
Q1 and average heterozygosity for SNPs not affecting
Q1 is 0.22 (Pearson r*, p = 5.6 x 107°), and the correla-
tion for Q2 is r* = 0.14 (p = 2 x 107*). This may explain
some of the false positives. Although such problems are
unlikely to arise for real data, they emphasize the diffi-
culties that may crop up in future studies using next-
generation sequencing technologies if case and control
subjects are not treated in the same way and if genotyp-
ing and variant calling are not performed blind to dis-
ease status.
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