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Abstract

Background: The mixed model based single locus regression analysis (MMRA) method was used to analyse the
common simulated dataset of the 15th QTL-MAS workshop to detect potential significant association between
single nucleotide polymorphisms (SNPs) and the simulated trait. A Wald chi-squared statistic with df =1 was
employed as test statistic and the permutation test was performed. For adjusting multiple testing, phenotypic
observations were permutated 10,000 times against the genotype and pedigree data to obtain the threshold for
declaring genome-wide significant SNPs. Linkage disequilibrium (LD) in term of D’ between significant SNPs was
quantified and LD blocks were defined to indicate quantitative trait loci (QTL) regions.

Results: The estimated heritability of the simulated trait is approximately 0.30. 82 genome-wide significant SNPs
(P < 0.05) on chromosomes 1, 2 and 3 were detected. Through the LD blocks of the significant SNPs, we
confirmed 5 and 1 QTL regions on chromosomes 1 and 3, respectively. No block was detected on chromosome 2,
and no significant SNP was detected on chromosomes 4 and 5.

Conclusion: MMRA is a suitable method for detecting additive QTL and a fast method with feasibility of
performing permutation test. Using LD blocks can effectively detect QTL regions.

Background
Recently, the high-density single nucleotide polymorphism
(SNP) arrays have been developed for almost all domestic
animals, which offer the prerequisite of genome-wide asso-
ciation study (GWAS), a more powerful approach for
high-resolution mapping of loci controlling phenotypic
traits in domestic animals [1]. In GWAS, two basic designs
of resource population have been widely used for associa-
tion analysis, one is the case-control design with unrelated
individuals, and the other is the family-based design with
pedigree structure. Corresponding to these two designs,

different approaches for association analysis have been
proposed. However, there is no clear evidence showing
general superiority of one approach over others. In farm
animals, family based design is more relevant because of
complex pedigree structure in almost all animal popula-
tions. In our previous GWAS study [2], we employed a
mixed model based single locus regression analysis
(MMRA) to test the association between SNPs and milk
production traits in dairy cattle. We found this method
was more powerful than the TDT-based single locus
regression analysis. To further verify its performance in
terms of power and type I error, we applied it to the com-
mon dataset provided in the 15th QTL-MAS workshop.

Methods
The simulated population consisted of 3,220 individuals in
two generations. The first generation consisted of 20 sires
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and 200 dams, which were assumed to be unrelated. Each
sire mated with 10 dams and each dam produced 15 pro-
genies, leading to a total of 3,000 individuals in the second
generation. Of the 15 progenies of each dam, 10 were phe-
notyped for a continuous trait. All of the 3,220 individuals
were genotyped for 9,990 SNP markers distributed on 5
chromosomes without missing. Each chromosome had a
size of 1 Morgan (M) and carried 1,998 evenly distributed
SNPs.

Variance component estimation
We applied the software DMU (Version 6, release 5.0)
[3] to estimate the variance components of the simu-
lated trait, which would be used in the subsequent asso-
ciation analysis, based on the following model

y = 1μ + Za + e

Where y is the vector of phenotypes of the 2,000 phe-
notyped individuals, μ is the overall mean, a is the vec-
tor of the residual polygenic effect with a ∼ N(0,Aσ 2

a )
(where A is the additive genetic relationship matrix and
σ 2
a is the additive genetic variance), Z is the incidence

matrix of a, and e is the vector of residual errors with
e ∼ N(0, Iσ 2

e ) (where I is a unit matrix and σ 2
e is the

residual error variance).

Genotype quality control
We removed the 1,000 progenies without phenotypes off
the genotype data, and we calculated the minor allele
frequency (MAF) for each SNP for the remained 2,220
individuals (2,000 progenies and 220 parents). We found
that 2,879 SNPs were homozygous (MAF = 0) for all
the tested individuals and additionally 715 SNPs had a
MAF less than 0.03. These SNPs were removed and
6,396 SNPs remained for the subsequent analyses.

Association analysis
The mixed model based single locus analysis [2,4] was
performed based on the following linear mixed model:

y = 1μ + bx + Za + e

where y is the vector of phenotypes of the 2000 pheno-
typed individuals, μ is the overall mean, × is the vector of
the SNP genotype indicators which takes values 0, 1 or 2
corresponding to the three genotypes 11, 12 and 22
(assuming 2 is the allele with a minor frequency), b is the
regression coefficient of phenotypes on SNP genotypes
(i.e., the substitution effect of the SNP), a is the vector of
the residual polygenic effect with a ∼ N(0,Aσ 2

a ) , Z is the
incidence matrix of a, and e is the vector of residual errors
with e ∼ N(0, Iσ 2

e ) .
For each SNP, the estimate of b and the correspond-

ing sampling variances Var(
∧
b) can be obtained via

mixed model equations (MME), and a Wald chi-squared
statistic ̂b2/Var(̂b) with df =1 was constructed to exam-
ine whether the SNP is associated with the trait.

Statistical inference
For the analyses above, the permutation method was
adopted to adjust for multiple testing from the number of
SNP loci detected. In our method, the phenotypes were
permuted 10,000 times against the genotype and pedigree
data and the empirical distribution of the Wald chi-
squared statistic under the null hypothesis (no association
existed between any SNP and the trait in genome-wide
level) was obtained using the largest Wald chi-squared sta-
tistic value across all SNPs from each permuted dataset.
The threshold value for declaring a significant association
was determined by choosing the 95th percentile of the
empirical distribution, i.e., we declared a significant SNP
at a 0.05 genome-wide significance level if its raw value of
the Wald chi-squared statistic was larger than the empiri-
cal threshold value.
For the significant SNPs, linkage disequilibrium (LD) in

term of D’ between them was quantified using Haploview
[5] and the LD blocks were defined by the criteria of
Gabriel et al. [6] with default parameters.

Results and discussion
Association analysis results
The estimates of σ 2

a and σ 2
e are 24.82 and 58.65, respec-

tively, so that the heritability estimate is 0.30 approxi-
mately. The profile of the raw p values (from the chi-
distribution and in terms of -log10 p) of all tested SNPs
is shown in Figure 1. By using simply Bonferroni correc-
tion, we detected 119 significant SNPs of 0.05 genome-
wide significance level (raw p values < 7.82E-6). However,
by using permutation test, we detected 82 significant
SNPs of 0.05 genome-wide significance level (raw
p values < 2.31E-7) for the simulated trait. The 82 signifi-
cant SNPs are distributed on chromosomes 1, 2 and 3,
i.e., 63 on chromosome 1, 3 on chromosome 2, and 16
on chromosome 3. The significant SNPs on chromosome
1 cover a large interval between 0.15cM and 15.30cM.
The simulated SNP with the biggest effect is at 2.90cM
(No.58), while the most significant SNP identified is at
3.55cM (No.71). The positions of the 3 significant SNPs
on chromosome 2 are 81.90cM, 83.10cM and 95.80cM,
respectively. Moreover, 13 of the 16 significant SNPs on
chromosome 3 cover an interval between 4.25cM and
5.65cM, and the other 3 are at 3.70cM, 16.10cM and
26.75cM, respectively. No SNPs on chromosome 4 and 5
were found to be associated with the trait significantly. If
we set the significant level at 0.01 for the permutation
test, the number of significant SNPs reduces to 32, of
which 3 are on chromosome 3 and all others on chromo-
some 1.
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To further pinpoint the relationship among the
detected SNPs, we analysed the LD levels in terms of D’
between the significant SNPs (Figures 2, 3 and 4) for
chromosomes 1-3, respectively. Through the criteria of
Gabriel et al. [6] with default parameters in Haploview
[5], we defined 5 LD blocks on chromosome 1, which
harbour 4 to 10 significant SNPs, and 1 LD block on
chromosome 3, which harbour 10 significant SNPs with

6 outside. No block was detected on chromosome 2.
The LD patterns show that these significant SNPs links
to each other in different LD levels.

Comparison of the significant SNPs with the simulated
QTN
On chromosome 1, there is one simulated QTN located
at 2.85cM (No.57), which had the largest effect among all

Figure 1 The Manhattan plots of GWAS for the 15th QTL-MAS Workshop Data. Chromosomes 1-5 are shown with different colours. The
magenta horizontal dotted line indicates the significance threshold of Bonferroni correction (-log10(7.82E-6)), and the black one indicates that of
permutation test(-log10(2.31E-7)).

Figure 2 Linkage disequilibrium (LD) patterns for significant SNPs on chromosome 1 (a), 2 (b) and 3 (c). Values in boxes are D’ values
between SNP pairs and the boxes are coloured according to the standard Haploview colour scheme: LOD>2 and D’=1, red; LOD>2 and D’<1,
shades of pink/red; LOD<2 and D’=1, blue; LOD<2 and D’<1, white (LOD is the log of the likelihood odds ratio, a measure of confidence in the
value of D’). LD blocks are marked with triangles.
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simulated QTNs. We detected 63 significant SNPs on
this chromosome. However, the true QTN at 2.85cM has
a MAF of 0 and was discarded after quality control, and
the adjacent SNP at 2.90cM (No.58), which has the lar-
gest estimated effect among all significant SNPs, is
accordingly considered as the putative QTN. Although a
large number of pseudo significant SNPs were identified
on this chromosome, the LD levels between the most
effective SNP and other 62 significant SNPs (Figure 2)
showed that 47 of them are in strong LD (D’>0.5) with it.
This suggests that the simulated QTN may be surrogated
by a suite of “ghost” QTNs nearby due to high LD level.
On chromosome 2, there are two simulated QTNs in

coupling linkage phase located at 81.90cM (No.3638)
and 93.75cM (No.3875), respectively. We detected 3 sig-
nificant SNPs, the first is exactly at 81.90cM, and the
second (No.3662, at 83.10cM) is in strong LD (D’ =
0.97) with the first one (Figure 3). But the third one
No.3916 is at 95.80cM and is 2.05cM away from the
second simulated QTN, while the LD level between
them is strong (D’=0.69, Figure 3).
On chromosome 3, there are two simulated QTN in

repulsion linkage phase located at 5cM (No.4100) and
15cM (No.4300), respectively. However, the first simu-
lated SNP on this chromosome also has a MAF of 0 and
was discarded after quality control. Of the 16 significant

SNPs detected, 10 are harboured in the LD block cover-
ing the interval between 4.75cM and 5.65cM with an
average LD level of 0.97 (D’), in which SNP No.4101 is
just adjacent to the first true QTN. The second simulated
QTN is 1.10cM away from the significant SNP (No.4322)
and the LD level between them is strong (D’=0.93).
The one simulated imprinting QTN on chromosome 4,

and 2 simulated epistatic QTNs on chromosome 5 were
not detected by our analysis. This is because our method
dose not account for both imprinting effect and epistatic
effect. Our method needs to be further improved to
account for interaction effects between SNPs and imprint-
ing effects from parents.

Comparison of the significant SNPs with the those with
high effects estimated via Bayesian approaches
To further validate significant SNPs identified herein, we
compared the most promising SNPs detected with those
with highest effects estimated via Bayesian approaches
(BayesA, BayesB and BayesCπ) reported in our another
analysis on prediction of genomic breeding values for
the same data set [7]. Since the results from the three
Bayesian approaches are similar and BayesCπ performed
best, we only compare with BayesCπ here. Specifically,
on chromosome 1, the most effective SNP (No.58) iden-
tified by MMRA is exactly the same as that by BayesCπ.

Figure 3 Linkage disequilibrium (LD) patterns for significant SNPs on chromosome 2. The true simulated QTN (No.3875 and No.4300,
respectively) are also included in addition to the significant SNPs.
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On chromosome 2, BayesCπ revealed SNP No. 3660
with the largest effect and SNP No.3873 with the second
largest effect, which are close to and in strong LD with
the significant SNPs No. 3662 and No. 3916 detected by
MMRA. On chromosome 3, the two promising SNPs
detected by MMRA are No.4101 and No.4322, which
are close to the SNP with the largest (No.4092) and the
second largest (No.4331) effect estimated by BayesCπ,
respectively. In all, most of findings herein are largely
consistent with those with highest effect estimates via
BayesCπ. This further demonstrates that the Bayesian
approaches (particularly BayesCπ) could also sever as
tools for QTL mapping, as suggested by Fan et al. [8].

Computing time
All analyses were implemented through Fortran pro-
grams and performed on an octal-core Linux Server
(Intel Xeon E5504 2.00GHz; 48.00GB RAM). The time
needed was about 1.5 minutes for one permutation ana-
lysis. The 10,000 permutations were performed through
8 threads, each was assigned 1,250 permutations. So, the
total computing time was about 31 hours. This shows
that MMRA is a fast method with feasibility of perform-
ing a large number of permutations.

Conclusion
Our results herein show that the MMRA method is suita-
ble for detecting additive QTL, and it is a fast method
with feasibility of performing permutation test. And the
LD region on chromosome 3 can effectively integrate sig-
nificant SNPs for QTL region detection. However, we
detects only one true additive QTN (No.3638), two SNPs
(No.58 and No.4101) close to two true additive QTNs
(No.57 and No.4100) with many false positives, which
remains to be further investigated and the MMRA method
needs to be further improved to account for other non-
additive effects.
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