POSTER PRESENTATION **Open Access** # Analysis of the DNA methylation of the *H19* gene in human bladder cancer Mariana B Reis^{1*}, Priscila M Ramos¹, João LV Camargo², Cláudia A Rainho¹ From São Paulo Advanced School of Comparative Oncology Águas de São Pedro, Brazil. 30 September - 6 October 2012 #### **Background** H19 is a paternally imprinted gene located at 11p15.5, which encodes a non-coding transcript. Although the role of genomic imprinting in bladder cancer is not well understood, previous studies have described H19 over-expression in these tumors. It is well established that a Differentially Methylated Region (DMR) regulates its maternal monoallelic expression by acting as an insulator that precludes the binding of the transcriptional factor CTCF in the paternal allele. #### Materials and methods DNA methylation *status* of two distinct regions of the *H19* gene was evaluated: the sixth CTCF-binding site located in the DMR (qMSP, Quantitative Real Time Methylation Specific Polymerase Chain Reaction) and the promoter-associated CpG island (MS-HRM, Methylation-Sensitive High Resolution Melting analysis) in a total of 48 tumoral samples (37 of them matched with normal adjacent tissue). #### **Results** Using a pool of blood samples obtained from healthy young adults as reference to the normal imprinting, higher methylation levels of the CTCF-binding site was detected in bladder tumors compared to the normal adjacent tissue (p=0.0031). Gains of methylation were more frequently detected in non-invasive (p=0.0425) and non-recurrent (p=0.0399) papillary bladder tumors. While DNA methylation levels of H19 promoter region varied from 10 to 50% in normal adjacent bladder tissues, tumoral samples showed greater variation (10 to 100% of methylation). Heterogeneous patterns of CpG methylation were also detected in nine tumoral samples. #### Conclusion(s) Our data suggest that aberrant DNA methylation is an epigenetic change potentially associated with loss of imprinting of the *H19* gene in bladder cancer. #### **Financial Support** FAPESP, CAPES. #### **Author details** ¹Department of Genetics, Biosciences Institute, UNESP, Sao Paulo State University, Botucatu, SP, Brazil. ²Department of Pathology, Botucatu Medical School, UNESP, Sao Paulo State University, Botucatu, SP, Brazil. Published: 4 April 2013 doi:10.1186/1753-6561-7-S2-P47 Cite this article as: Reis et al.: Analysis of the DNA methylation of the H19 gene in human bladder cancer. BMC Proceedings 2013 7(Suppl 2): ## Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit Full list of author information is available at the end of the article ^{*} Correspondence: marianabisarro@ibb.unesp.br ¹Department of Genetics, Biosciences Institute, UNESP, Sao Paulo State University, Botucatu, SP, Brazil