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Abstract

Background: High-throughput sequencing experiments can be viewed as measuring some sort of a “genomic
signal” that may represent a biological event such as the binding of a transcription factor to the genome, locations
of chromatin modifications, or even a background or control condition. Numerous algorithms have been
developed to extract different kinds of information from such data. However, there has been very little focus on
the reconstruction of the genomic signal itself. Such reconstructions may be useful for a variety of purposes
ranging from simple visualization of the signals to sophisticated comparison of different datasets.

Methods: Here, we propose that adaptive-bandwidth kernel density estimators are well-suited for genomic signal
reconstructions. This class of estimators is a natural extension of the fixed-bandwidth estimators that have been
employed in several existing ChIP-Seq analysis programs.

Results: Using a set of ChIP-Seq datasets from the ENCODE project, we show that adaptive-bandwidth estimators
have greater accuracy at signal reconstruction compared to fixed-bandwidth estimators, and that they have
significant advantages in terms of visualization as well. For both fixed and adaptive-bandwidth schemes, we
demonstrate that smoothing parameters can be set automatically using a held-out set of tuning data. We also
carry out a computational complexity analysis of the different schemes and confirm through experimentation that
the necessary computations can be readily carried out on a modern workstation without any significant issues.

Introduction
High-throughput sequencing (HTS) has become a cen-
tral technology in genome-wide studies of protein-DNA
interactions, chromatin-state modifications, gene regula-
tion and expression, copy number variations, etc. [1,2].
In many cases, such experiments can be viewed
abstractly as attempting to measure a “signal” f that var-
ies across the genome. For instance, if the DNA that is
sequenced comes from chromatin immunopreciptation
(ChIP) of a transcription factor, then the signal f is
expected to have the highest amplitude in regions of the
genome where the factor binds most strongly. If the
sequenced DNA comes from reverse transcription of
RNA, then f is expected to have the highest amplitude

in regions of the genome that are most actively tran-
scribed. Of course, experience with HTS technologies
has shown that such genome-wide signals also reflect
other biases or influences–due to, for example, sequen-
cing, chromatin accessibility, mappability, etc. [3]. Tech-
niques for correcting such biases are beginning to
emerge [4,5]. Regardless, highthroughput sequencing
continues to generate numerous important insights into
the molecular networks that govern the cell.
Various analysis algorithms specialize in extracting bio-

logically-relevant information from different types of HTS
data. For example, peak-calling algorithms take mapped
reads and attempt to identify regions of high enrichment
(for review and some comparisons, see [3,6,7]). Some algo-
rithms attempt to solve this problem generally, whereas
others specialize in identifying punctate transcription-
factor binding sites [8,9] or, conversely, broader regional
enrichment, as is often seen in histone modification
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patterns [7,10]. Similarly, a raft of algorithms specializes in
estimating gene expression, including the expression
of alternative spliceoforms (e.g., [11-14]). While such
approaches are clearly valuable, few deal directly with the
problem of estimating the genomewide signal f.
Yet, there are many reasons to be interested in such a

direct reconstruction. Perhaps the most straightforward
is that reconstructing f is useful for visualization in gen-
ome browser tracks. Visualization of the signal allows
biologists to sanity-check their data, compare different
signals at an intuitive level, identify regions of interest,
generate hypotheses, and so on [15]. Reconstruction also
allows us to manipulate and combine different signals,
for example by “subtracting” a background noise/control
signal from a treatment signal. Indeed, there is some
evidence from the peak-calling literature that true bind-
ing and background processes can be separated, leading
to enhanced signal fidelity [10,16]. We contend that
such issues have not been explored in the literature
nearly as thoroughly as they should have been, in part
because of a lack of focus on the more elementary pro-
blem of reconstructing genome-wide signals themselves.
The question then becomes, how can we best recon-

struct the genome-wide signals measured by HTS
experiments? One simple approach is a read “pileup”
map. The details of computing a pile-up depend on
whether DNA fragments are sequenced entirely or only
partially and, in the latter case, also on whether they are
sequenced partially from just one end (resulting in sin-
gle-end reads) or from both ends (resulting in paired-
end reads). In the case of a single-end dataset, which is
probably the most common type of HTS dataset at pre-
sent, the sequenced reads are mapped back to the gen-
ome to obtain their locations (Figure 1A). Then the
positive-and negative-strand reads are either extended to
the mean fragment length (Figure 1B) or shifted towards
each other by half the mean fragment length. In the for-
mer case, the signal profile is built as an aggregation of
the intervals representing the fragments (Figure 1C)
[16,17]. In the latter case, the simplest way of building a
profile is by using a moving histogram. This involves
sliding a window of fixed width across the genome and
counting the number of reads falling within the window
as the window moves forward. Although such histo-
grams have been implemented in various versions
[8,18-20], in general, histograms are problematic as esti-
mators because they are not smooth and the resulting
estimates are strongly affected by the choice of histo-
gram bin width.
An alternative and more accurate estimator is the

kernel density estimator (KDE), where a kernel (e.g.,
Gaussian) of a chosen bandwidth (standard deviation) is
centered at each sample point (a read), and the kernels
are then summed to obtain the density estimate (Figure

1D) [21,22]. Intuitively, high-density regions would cor-
respond to tall peaks due to the piling up of closely-
spaced kernels. These KDE-based density estimates can
be thought of as denoting the probability of finding a
read at a given base pair location. QuEST [23], F-Seq
[15], and Qeseq [7] apply this method to identify
enriched regions in HTS data. Although the density esti-
mates obtained by these algorithms are in general
smoother and more accurate than those obtained using
histograms, the bandwidths of the kernels are fixed and
are chosen arbitrarily (QuEST uses 30 bp, Qeseq uses
150 bp, and F-Seq uses an indirect feature-length para-
meter to set bandwidth to typically a few thousand bp).
The fact that the quality of the density estimates are
very much dependent on the choice of the kernel band-
width necessitates a more careful and methodical
approach to bandwidth selection. In theory, a single
optimal bandwidth can be systematically chosen for a
given dataset using one of the popular plug-in or cross-
validation approaches [24-28]. However, the large gen-
ome sizes and the sparsity of HTS data make it a
cumbersome process to estimate bandwidth in this man-
ner. Even if achieved, a single bandwidth for the entire
genome would not usually be sufficient for identifying
enriched regions with a high degree of accuracy, owing
to the widely varying spatial smoothness of the read
distributions. Ideally, small bandwidths work best for
high-density regions and large bandwidths work best for
low-density regions. If the bandwidth is fixed for the
entire genome, then it has to take a compromise value
between the two extremes, thus limiting the accuracy of
the resulting density estimate. In addition, the estimate
would tend to have a large number of spurious local
maxima corresponding to individual reads in low-den-
sity regions (Figure 1D). Due to these reasons, a fixed-
bandwidth KDE is not the best choice for modeling the
widely-varying distributions associated with ChIP-Seq or
other types of HTS data.
An effective alternative is to use an adaptive scheme

that utilizes local data features to dynamically adjust the
density estimate to reflect variations in the underlying
true density. Adaptive-bandwidth KDE, as the name
suggests, achieves this by adapting (or varying) the ker-
nel bandwidth according to the local characteristics of
the data. Two types of adaptive-bandwidth KDEs have
been investigated in the literature. First is the balloon
estimator [29] where, for each estimation point, a band-
width is first chosen and the estimate at that point is
then computed as an average of the identically-scaled
kernels evaluated at that point. The kernels are, of
course, centered at the data points. Since the bandwidth
is fixed for a given estimation point, this estimator,
taken pointwise, behaves like a fixed-bandwidth KDE.
Although the estimator has been shown to be promising
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in higher dimensions, it has serious drawbacks in the
univariate and bivariate settings [30,31]. Most impor-
tantly, the estimate fails to integrate to one and, in cer-
tain situations, has a performance that is worse than
that of the fixed-bandwidth KDE.
The second type of adaptive-bandwidth estimator is the

sample-point estimator, where a bandwidth is selected for
each data point instead of the estimation point [32]. The
estimate f̂ is then an average of differently-scaled kernels
centered at the data points. When the kernel function is
a density, f̂ itself is a density. This type of estimator has
been generally found to be a better performer than the
balloon estimator [31,33,34], and is easily adaptable for
HTS data. In addition, considering the large genomic
sizes that are encountered, the estimate is simple and
straightforward to compute since there are only as many
kernels as the number of reads in the data. The only
caveat, pointed out in [31], is a phenomenon referred to
as “non-locality” where the estimate at a certain point
can be affected by kernels corresponding to data very far
away from it. However, in practice, this would not be an
issue because, for the sake of computational feasibility,
the kernel tails would have to be truncated after a rea-
sonable number of standard deviations. This truncation
would typically have no serious consequence as the
values involved would be very small.
In this paper, we present an adaptive-bandwidth KDE

for modeling the tag distributions of HTS data. The esti-
mator automatically adjusts to the smoothness variations

by choosing an appropriate local bandwidth for every
read location, thereby leading to a much better estimate
of the underlying distribution compared to that obtained
using a fixed-bandwidth KDE. To the best of our knowl-
edge, adaptive-bandwidth KDEs have not been considered
for HTS data before. The method is inspired from the
sample-point estimator [32], but has a number of new
features that have been specifically developed to make it
suitable for use in HTS data analysis. We consider three
possibilities for the choice of the kernel function, namely,
the square, triangular, and Gaussian distributions, and
compare and evaluate their performance using a number
of public datasets. For more detailed discussions on
adaptive KDEs in general, the reader is referred to
[29-31,33-35] and references therein.

Methods
Datasets
We compare different density estimation approaches on a
suite of ten ENCODE single-end ChIP-Seq datasets avail-
able through the Gene Expression Omnibus. We down-
loaded the data in the form of BAM files, in which reads
have already been mapped to positions in the human
genome. We chose five datasets describing pulldowns for
histone 3 with the following modifications: H3K27ac
(GSM733718), H3K27me3 (GSM733748), H3K36me3
(GSM733725), H3K4me1 (GSM733782), and H3K4me2
(GSM733670). The other five datasets describe binding of
the following transcription factors: BRCA1 (GSM935377),

Figure 1 Different approaches to genomic signal reconstruction. (A) Reads in a portion of the genome. Positive-strand read starts are
shown as spikes above the center line, while negative-strand read starts are below the center line. (B) Extending reads by the mean fragment
length in the direction indicated by the strand to which they are mapped. (C) Pile-up curve obtained by adding together the extended read
intervals, regardless of direction. (D) Fixed-bandwidth kernel density estimate (KDE) obtained using Gaussian kernels and after shifting each read
position by half the mean fragment length in the read direction (positive or negative strand). (E) Adaptive-bandwidth KDE, also obtained using
Gaussian kernels. This method creates greater smoothing in areas of low data density and emphasizes enriched regions more strongly.
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CTCF (GSM733672), GTF2F1 (GSM935581), RAD21
(GSM803466), and REST (GSM803365). For the sake of
computational convenience, we restricted our attention
to estimating the genomic signal on chromosome 1. In
pilot studies we conducted, there were no significant dif-
ferences in conclusions based on density estimation over
the whole genome versus density estimation on just chro-
mosome 1. By focusing on chromosome 1, our computa-
tions proceeded much faster. Hence, we first isolated the
reads from chromosome 1, removed any duplicate reads,
and then shifted positive and negative strand reads
towards each other by one half the fragment length,
which was estimated using the MaSC approach [5]. We
took the starting positions of the resulting reads as data
“points” for the purpose of density estimation, and sorted
them in ascending order. Each dataset was thus reduced
to a sorted list of positions X = (x1, x2, . . ., xn).

Fixed and adaptive bandwidth kernel density estimators
From a density-estimation perspective, the data X is
viewed as being sampled from some unknown distribu-
tion f(x) on the genome. The idea is to estimate f using
the sample data. We do this with a kernel density esti-
mator, which is of the form

f̂ (x) =
1
n

n∑
i=1

K(x − xi, hi) (1)

Here, x is a query point at which we want to evaluate
our estimate of f, K is a kernel function, xi is a sample
data point, and hi is the bandwidth associated with xi.
The kernel function K, for example, might be Gaussian
in shape, with mean zero and standard deviation hi. The
translated kernel, K(x − xi, hi), would then have mean xi.
In a fixed-bandwidth kernel density estimate, hi is

equal to a constant value h, which may be chosen a
priori or dependent somehow on the data. Intuitively,
the larger h is, the more aggressively the data is
smoothed, because the kernel function becomes broader
for larger h. Below, we also experiment with blending
fixed-bandwidth estimators with a uniform density. This
creates a density of the form f̂ε(x) = (1 − ε)f̂ (x) + εu(x),
where ε Î [0, 1], f̂ (x) is the kernel density estimate of
Eqn. 1, and u(x) is a uniform density over the genome.
[In fact, because we are concerned with probabilities
over integer base pair positions, we should be discussing
probability distributions rather than probability densities.
However, in keeping with the traditional terminology of
these estimators, we will employ the term ‘density’
throughout.]
In an adaptive-bandwidth kernel density estimator,

each hi is allowed to be different. We employ a variant
of the k-nearest neighbor rule to assign the bandwidth
hi. In the statistics literature, there are various schemes

for assigning bandwidths. Perhaps the simplest and the
most practical rule is to assign to point xi a bandwidth
hi equal to the absolute distance from xi to its kth near-
est neighbor [31]. We will call this the KNN1 rule.
Intuitively, in regions of sparse data, the kth nearest
neighbor will be far away, and so large bandwidths will
be assigned, leading to aggressive smoothing of the sig-
nal. In dense regions, on the other hand, the kth nearest
neighbor will be much closer, leading to small band-
widths, and thereby an accurate reconstruction of the
signal. The choice of k allows us to indirectly control (to
a certain degree) the bandwidth assigned to each point–
large k values generally lead to large bandwidths,
although the exact bandwidth assigned to each point
depends on its proximity to its neighbors.
It turns out that the KNN1 rule has a minor problem

which can be awkward in practice. Consider the situa-
tion where there are two regions of dense data with a
sparse region in between. It may so happen that the
bandwidths of all points (at least for some choices of k)
may be set by points within the same dense region.
Consequently, no points, including those at the inside
edges of the dense regions, would be assigned a large
bandwidth, wide enough to cover the span of the sparse
region. Therefore, the points in the sparse region may
each end up with a probability of zero. If we then evalu-
ate a new set of data points on the density estimate, and
a single point from this set happens to fall in the afore-
mentioned sparse region, then the zero probability
assigned to this point would result in the joint probabil-
ity of the new set of points to be zero–all because of
that single point in the sparse region. This “zero pro-
blem” is quite common with ChIP-seq datasets, where
there are large numbers of very sparse regions.
To circumvent this problem, we propose a variant of

KNN1 for assigning bandwidths, which we call KNN2.
According to this rule, a point xi is assigned the same
bandwidth as in the KNN1 rule unless all k of its near-
est neighbors are on the same side (left or right). In that
case, we instead take the bandwidth to be the distance
to the single nearest point in the opposite direction.
This rule ensures that the density estimate is nonzero
everywhere (except possibly at the extreme ends of the
range), thereby avoiding the zero problem.

Kernel functions
We explore three possible shapes of the kernel function:
Gaussian, square (also known as the Parzen window),
and triangle (also known as the hat function). As a mat-
ter of computational convenience, we truncate the
Gaussian distribution at ± 5 standard deviations. We
interpret the bandwidth parameter h for each shape of
the kernel function in such a way that, when viewed as
a distribution in its own right, the standard deviation of
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that distribution is approximately equal to the band-
width parameter. This ensures the greatest comparability
of results from different kernel functions in experiments
where we vary bandwidths or employ adaptive band-
widths. We also take care that each kernel function
sums to one. As such, the three kernel functions we
consider are

Kg(x, h) =
{
cg(h) exp(−x2/2h2) if |x| ≤ 5h
0 if |x| > 5h

Ksq(x, h) =
{
csq(h) if |x| ≤ √

3h
0 if |x| >

√
3h

Ktr(x, h) =
{
ctr(h)(1 − |x|/√6h) if |x| ≤ √

6h
0 if |x| >

√
6h

Here, cg (h), csq (h), and ctr (h) are normalizations that
ensure, as a function of bandwidth, that each kernel
sums to one.

Results and discussion
Effects of different density estimation schemes in
genomic signal reconstruction
To help visualize the effects of different density estima-
tion approaches on real data, we computed fixed- and
adaptive-bandwidth Gaussian density estimates based on
the Rad21 data in a window of chromosome 1. For
fixed-bandwidth estimation, we considered two choices:
h = 16 (close to the h = 15 default used in QuEST), and
h = 362, which we show in the next subsection to be
the optimal value according to the probability of held-
out tuning data (at least when optimized over integer
powers of

√
2). For adaptive bandwidth, we also consid-

ered two choices: k = 7, which is optimal according to a
held-out tuning dataset, and k = 14, chosen to increase
smoothing.
The results are shown in Figure 2A. The fixed band-

width estimate with h = 16 includes many fluctuations
across the window. Indeed, in data-sparse regions of the
window, each data point (shown by a black mark) pro-
duces its own small bump in the curve, just as in our
idealized example of Figure 1. Between these bumps, the
density estimate is zero–although it is probably reason-
able to expect that, if the experiments were repeated,
reads may appear at other locations within the region of
generally low signal. Still, the density estimate is highest
where the most data can be found, and these strong
peaks in the curve are readily picked out by the eye.
With the larger bandwidth of h = 362, most fluctuations
in the curve are smoothed away, leaving only broad
swells where the data is most dense. This, correctly,
eliminates the visual distraction of small fluctuations,
although it also de-emphasizes the more dense regions

and possible structure within them (such as possible
multiple peaks). The adaptive bandwidth estimates elim-
inate small fluctuations for both choices of k, while still
strongly emphasizing data-dense regions. The difference
between the estimates corresponding to k = 7 and k =
14 has more to do with the fine structure of dense
regions–questions such as “is an enriched region a sin-
gle peak, or two or three separate peaks?” In the next
section, we demonstrate that k (or h) can be optimized
using held-out data in a tuning set. However, such ques-
tions of fine structure may also be studied by consider-
ing additional information, such as the locations of
binding motifs for the factor, or signals in other ChIP-
Seq datasets.
To quantitatively demonstrate the qualitative effects

described above, we identified all strict local maxima for
chromosome 1 in the fixed bandwith h = 362 and the
adaptive bandwidth k = 7 curves. The curve f has a strict
local maximum at position b if f (b) > f (b − 1) and f (b)
> f (b + 1). While some local maxima correspond to
regions of high read densities that are biologically signif-
icant, such as a transcription-factor binding site, other
local maxima correspond to peaks of stand-alone kernel
functions corresponding to individual reads that are
likely to have no significance. Figure 2B shows histo-
grams of the heights of these maxima. From the histo-
grams, we see that the adaptive bandwidth estimator
produces a much wider range of peak heights resulting
from the fact that it strongly emphasizes data-dense
regions. It also produces a smaller number of local max-
ima (NLM)–a trend that holds for most, though not all,
of the datasets we have considered here (see Table 1).
Unsurprisingly, we note a generally inverse relationship
between the bandwidth h or the number of nearest
neighbors k and the number of local maxima in the
resulting density estimate. Nevertheless, all density esti-
mates have tens of thousands of local maxima, consider-
ing that these results correspond only to chromosome 1.
Therefore, when computed for the whole genome, the
numbers can be expected to be much greater than the
expected number of bona fide binding sites for a tran-
scription factor.
To the extent that some of the local maxima corre-

spond to “noise” in the density estimate, we can say that
larger kernel bandwidths and/or adaptively chosen
bandwidths (as opposed to fixed bandwidths) generally
produce less noisy density estimates. Specifically, among
the three kernel functions considered, the square kernel
tends to yield the most noisy signal, understandably due
to its abrupt transitions (a rising edge and a falling edge
for every kernel centered at a read). In comparison, the
triangle kernel is smoother (or less noisy) due to its pie-
cewise linearity. The Gaussian kernel, on the other
hand, yields the smoothest (or the least noisy) density

Ramachandran and Perkins BMC Proceedings 2013, 7(Suppl 7):S7
http://www.biomedcentral.com/1753-6561/7/S7/S7

Page 5 of 10



Figure 2 Effects of different signal-reconstruction approaches. (A) From top to bottom: fixed-bandwidth Gaussian estimators for a portion of
the Rad21 data using h = 16 (close to the h = 15 that is default in the QuEST software) and h = 362 (which appears optimal based on
evaluation of held-out tuning data), adaptive-bandwidth Gaussian estimators using k = 7 (optimal based on held-out tuning data) and k = 14
(double the optimal choice, and intended to obtain more aggressive smoothing). In each plot, the curve shows the reconstructed density. The
short black vertical marks indicate the read positions. (B) Histograms of heights of local maxima for fixed-bandwidth Gaussian (h = 362) and
adaptive-bandwidth Gaussian (k = 7). Note that the vertical axes are in log scale.

Table 1 Optimized Parameters

Dataset Fixed BW KDE Adaptive BW KDE

Opt. h NLM CPU time (s) Opt. k NLM CPU time (s) (Gau/Tri/Sq)

H3K27ac 1024 40892 395 18 32357 1563 / 653 / 161

H3K27me3 2048 21476 230 16 12291 1513 / 620 / 128

H3K36me3 2048 21052 679 25 19035 2117 / 946 / 217

H3K4me1 1448 28264 240 7 43188 763 / 300 / 74

H3K4me2 724 55799 336 11 41147 934 / 376 / 83

BRCA1 1448 29078 861 24 33822 2158 / 842 / 233

CTCF 512 82386 184 8 53094 685 / 249 / 54

GTF2F1 1024 40399 573 22 37024 1776 / 633 / 148

RAD21 362 111671 158 7 51692 629 / 256 / 61

REST 724 57598 287 14 29816 1213 / 455 / 104
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signal, due, of course, to its well-known smoothing and
denoising properties [36].

Adaptive-bandwidth KDE outperforms fixed-bandwidth
KDE on held-out data
To more formally assess the accuracy of different den-
sity estimation strategies, we randomly divided each
dataset into three parts: 50% for training (i.e., creation
of the density estimate), 25% for tuning (setting para-
meters such as bandwidth h or number of neighbors k),
and 25% for testing. We first focus on the results for
Rad21, which are largely representative of the other
datasets, before presenting a comparison across all ten
datasets.
Figure 3A shows the results of several fixed-bandwidth

density estimators on the Rad21 dataset: the standard
fixed-bandwidth Gaussian kernel estimate (ε = 0), and
that same estimate blended with a 10%, 1%, and 0.1%
uniform density (ε = 0.1, 0.01, and 0.001, respectively).
The vertical axis shows the mean log probability of the
tuning data under the density estimate obtained using
the training data. The horizontal axis shows the effect of
varying the bandwidth. [The mean log probability of the
tuning data is equivalent to the logarithm of the geo-
metric mean of the tuning data point probabilities. We
use the logarithm here for greater visibility of the plots.
We employ the mean across tuning points so that differ-
ent datasets with different total numbers of points can
be compared directly.]
For the ε = 0 case, it is only at the largest tested value

of the bandwidth parameter, h = 215 = 32768, that the
tuning data has a nonzero probability. For smaller band-
widths, some tuning data points are left uncovered by
any kernel in the training density. Such points get
assigned a zero probability individually and, therefore,
the entire tuning set is assigned a zero probability. For a
typical, point-binding transcription factor, the peaks in
the density may be a few hundred base pairs wide, and
therefore smoothing with a kernel bandwidth in the tens
of thousands is not ideal. In such situations, then, the
vast regions of low signal levels demand a bandwidth
inappropriate to the more interesting parts of the signal,
and therefore choosing a single bandwidth becomes
difficult.
For the ε >0 cases, the uniform density component

solves the “zero problem” of tuning points being left
uncovered (similar to our previous use of a uniform
mixture component in analyzing multi-modal flow cyto-
metry data [37]). The tuning data thus has nonzero
probability for all choices of bandwidth, and by varying
the bandwidth we can choose an appropriate one, as
shown in Figure 3A. For this dataset, an appropriate
bandwidth appears to be in the range of 500 to 1000
base pairs. We note that the best choice of bandwidth

has some dependence on the ε parameter. Moreover,
different choices of ε lead to mildly differing probabil-
ities of the tuning data if bandwidth is optimized. For all
choices of ε, however, we clearly see that too small a
bandwidth leads to undersmoothing of the data, as seen
by very poor probability of the tuning data. When band-
width is too large, oversmoothing results, and the prob-
ability of the tuning data also suffers, although this loss
is not as severe as that with undersmoothing. For other
datasets, we often found that the tuning curves were
even flatter for high bandwidths than the Rad21 tuning
curve, rendering these datasets relatively resistant to
oversmoothing. For the remainder of our analyses, we
focus on the ε = 0.1 choice. Although the tuning data
were slightly less probable with this choice than with
smaller values of ε, this choice favored smaller band-
widths h, which is preferable for emphasizing regions of
true signal density.
Figure 3B shows the results of adaptive-bandwidth

density estimators with Gaussian, triangle, and square
kernel functions for varying values of the nearest-neigh-
bor parameter k. These results are again for the Rad21
dataset, and show the mean log probability of the tuning
data under the density estimate obtained from the train-
ing data. We have used the KNN2 rule for assigning
bandwidths. For this dataset, we find that an optimal
value of k = 7 can be chosen based on the tuningset
probability. Values smaller than this optimal value result
in undersmoothing, and larger values result in over-
smoothing. However, in absolute terms, the tuning-set
probability actually changes very little as a function of k.
The probability using the best value of k (7) is only
about 10% higher than under the worst value of k
tested. By way of comparison, better or worse values of
the bandwidth parameter h for the fixed-bandwidth esti-
mators in Figure 3A resulted in orders-of-magnitude
differences in the tuning-set probability. We also
observe that the probability of the tuning data obtained
under the adaptive-bandwidth scheme is higher than
that obtained under the fixed-bandwidth scheme. Intui-
tively, the adaptive-bandwith scheme allows, by design,
coverage of sparse data regions without sacrificing accu-
racy in high-density regions. The Gaussian and triangle
kernels performed very similarly, with the Gaussian
being slightly better at all values of k. The square kernel
fared slightly worse, although the difference is small
compared to even the small loss that may result from a
poor choice of k, let alone the difference observed for
fixed-bandwidth density estimators.
Figure 3C compares the results of fixed and adaptive-

bandwidth approaches on the full suite of the 10 data-
sets. We compare fixed-bandwidth Gaussian kernel esti-
mation with ε = 0.1 and h = 16 (close to the h = s = 15
choice that is the default in the QuEST software [23]),
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fixed-bandwidth Gaussian kernel estimation with ε = 0.1
and bandwidth h optimized on the tuning set, and adap-
tive-bandwidth estimation with Gaussian, triangle, and
square kernel functions with KNN2 bandwidth selection
and optimal k (chosen to maximize tuning-set probabil-
ity). We report geometric mean probability of the test
data points in the bar charts, while Table shows the
optimized bandwidths h or nearest neighbor parameters
k, depending on the method. The results are remarkably
consistent across the 10 datasets. Adaptive-bandwidth
estimation with Gaussian kernels is uniformly the best
performer, followed closely by the triangle and the

square kernels. Thus, by the measure of mean log prob-
ability of test data, the Gaussian kernel is consistently
best at smoothing (or denoising) the data. Among the
two fixed-bandwidth cases, the approach of optimizing
bandwidth on a tuning set always leads to improved
test-set performance, emphasizing the importance of
using a tuning set to optimize algorithm parameters. For
many datasets, the fixed (but optimized) bandwidth
Gaussian estimator is only about 10% worse than the
adaptive-bandwidth schemes, although for some datasets
its performance drops to about two-thirds or even one-
half of that of the adaptive-bandwidth schemes. The

Figure 3 Held-out tuning data analysis. Assessment of (A) fixed and (B) adaptive bandwidth schemes on held-out tuning data from the Rad21
dataset across a range of the bandwidth parameter h and the kth-nearest neighbor parameter k. (C) Comparison of five different approaches on
held-out test data from 10 ENCODE datasets: (i) fixed-bandwidth Gaussian with h = 16, (ii) fixed-bandwidth Gaussian with h optimized on the
tuning set, (iii, iv, v) adaptive-bandwidth Gaussian, triangle, and square kernel functions with k optimized on the tuning set.
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unoptimized fixed-bandwidth scheme is uniformly the
worst, with a test-set probability on average about one-
tenth of that of the other schemes.

Kernel function choice influences time and space
complexity
Although our analysis shows that the choice of the ker-
nel function–Gaussian, square, or triangle–has little
influence on tuning or test-set probabilities, the choice
does impact the computational resources needed to
compute the densities. The final columns of each half of
Table show the CPU times, measured in seconds on a
SunFire x2250 cluster computing node, for evaluating
the full density estimate across chromosome 1 for the
three different kernel functions. The Gaussian estimate
is always the most expensive to compute, and there are
two main reasons for this. First, it has the widest sup-
port of all the kernels (10 standard deviations in dia-
meter), and it involves evaluation of the exponential
function, which is a relatively time-consuming opera-
tion. The triangle estimate, with a smaller support and a
simple function to evaluate, was typically about 2.5
times faster to compute. The square estimate, with the
narrowest support and a constant height (though depen-
dent on bandwidth), was roughly 10 times as fast to
evaluate as the Gaussian estimate.
In slightly more formal terms, if we have D training

data points, S base pairs of average kernel support, and
a genome of size G base pairs, then we expect O(DS +
G) computations to evaluate a kernel density estimate.
The G term is for initializing the density to zero every-
where, and the DS term is for evaluating each kernel
over the base pairs to which it contributes probability
mass. Empirically, the linear influences of D and S are
well born out when we plot, for instance, CPU time ver-
sus dataset size or mean bandwidth size. Different ker-
nel functions affect mainly the slope of the relationship
of CPU time to D or S–i.e., they determine the constant
inside the big O.
This analysis, however, assumes explicit representation

of the density value at every base pair. The square ker-
nel density estimate is piecewise constant, comprising O
(D) pieces–each data point contributes one rise and one
fall to the function f̂ (x). Thus, the density can be repre-
sented in terms of the start, end, and height of each
piece, and can be computed in O(D) time and requires
only O(D) space (as opposed to O(G) space for a general
density over the whole genome). Moreover, such a pie-
cewise constant density is readily represented as a BED
file, making it convenient for browser viewing. For the
triangle kernel function, the density estimate is piece-
wise linear with O(D) pieces; this too can be handled in
O(D) time and space, although we know of no browser

file format allowing piecewise linear functions. Given
that the triangle kernel has similar computational
requirements to the square kernel, and yet an accuracy
comparable to the Gaussian kernel, defining a browser
file format that allows for piecewise linear functions
could be advantageous. Thus, although accuracy points
to the Gaussian kernel as the best choice for density
estimation, square and triangle kernels have points in
their favor regarding computation and browsing
convenience.

Conclusions and future work
We have investigated adaptive-bandwidth kernel density
estimators for the reconstruction and visualization of
genomic signals underlying ChIP-Seq data, with several
results. First, we found that adaptive-bandwidth schemes
generally outperform fixed-bandwidth schemes in terms
of accuracy. In our opinion, adaptive-bandwidth
schemes also hold visualization advantages, although we
admit this is somewhat subjective. With optimized
smoothing parameters, fixed-bandwidth estimators held
a slight advantage in terms of computation time,
although all estimates can be computed quickly enough
that computation time does not seem to be a major
concern. Among different kernel functions, we found
that all yielded comparable accuracy with some having
potential advantages in terms of compact representation
and genome browser compatibility. It remains to be
investigated whether the increased accuracy of adaptive-
bandwidth estimates will translate into improved abil-
ities of extracting biological information–for instance, in
terms of transcription factor binding sites or peaks,
assessment of regions of enrichment for histone marks
or, more generally, comparison of different ChIP-Seq
signals. Relatedly, our methods may be useful in more
accurately decomposing genomic signals into constitu-
ent parts, or correcting for different sources of bias.
One way to do this would be to create adaptive-band-
width KDE smooths of different possible sources of bias
(e.g., local GC content, mappability, etc.), and then use
regression, deconvolution, or principal components style
anlayses to isolate the true signal of interest. Alterna-
tively, one might generalize the adaptive-bandwidth
KDE approach to that of conditional density estimation
to account for possible biases at the time of signal
reconstruction. We leave these questions as topics for
future study.
Software implementing adaptive-bandwidth density

estimation for ChIP-Seq data is available at http://www.
perkinslab.ca/Software.html.
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