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Abstract

The new generation of sequencing platforms opens new horizons in the genetics field. It is possible to exhaustively
assay all genetic variants in an individual and search for phenotypic associations. The whole genome sequencing
approach, when applied to a large human sample like the San Antonio Family Study, detects a very large number
(>25 million) of single nucleotide variants along with other more complex variants. The analytical challenges imposed
by this number of variants are formidable, suggesting that methods are needed to reduce the overall number of
statistical tests. In this study, we develop a single degree-of-freedom test of variants in a gene pathway employing a
random effect model that uses an empirical pathway-specific genetic relationship matrix as the focal covariance kernel.
The empirical pathway-specific genetic relationship uses all variants (or a chosen subset) from gene members of a
given biological pathway. Using SOLAR’s pedigree-based variance components modeling, which also allows for
arbitrary fixed effects, such as principal components, to deal with latent population structure, we employ a likelihood
ratio test of the pathway-specific genetic relationship matrix model. We examine all gene pathways in KEGG database
gene pathways using our method in the first replicate of the Genetic Analysis Workshop 18 simulation of systolic blood
pressure. Our random effect approach was able to detect true association signals in causal gene pathways. Those
pathways could be easily be further dissected by the independent analysis of all markers.

Background
The whole genome sequencing (WGS) platforms are
changing the “game” in several scientific fields by offering
a cost-effective way to harvest all genetic information of
an individual or populations of interest. Genome-wide
association studies (GWAS) approaches have been widely
used in the identification of genetic markers associated
with phenotypes of interest based on the common
variant-common disease assumption [1]. The results of
epidemiologic GWAS, while successful in the sheer num-
ber of quantitative trait loci that have been localized,
have been relatively disappointing in their failure to iden-
tify the underlying causal genes for complex diseases like
cancer, hypertension, and diabetes [1,2]. Generally, the

significantly associated single-nucleotide polymorphisms
(SNPs) are responsible for a very small proportion of these
traits’ heritability; several sources of this missing heritabil-
ity have been proposed, with rare variation notable among
them. WGS platforms, when applied to a large human
pedigree, offer a unique possibility to study rare variant
segregation and its role in a phenotype of interest [3]. Rare
variants are clear candidates to explain part of the missing
heritability paradox, but the low number of copies requires
the development of alternative approaches to account for
their association [2]. More importantly, rare variants of
larger effect are far more likely to rapidly lead to causal
gene identification than common variants of very small
effect.
A gene pathway is an organized group of genes acting

together to perform a specific cellular or physiological
function. This high level of organization allows a fast and
accurate response to any insult that a cell or tissue would
suffer. This information is used for candidate genes
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annotation and several databases offer pathways informa-
tion like GO (Gene Ontology) and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) [4,5]. The causal
component of a gene pathway will involve all phenotypi-
cally relevant functional variants of the genes in the path-
way. To develop an omnibus test of whether a gene
pathway plays a role in influencing a given phenotype, we
must aggregate information into a single parameter.
A standard way to examine genetic variation across

individuals is to examine genetic relationship matrices
(GRMs) that quantify pairwise genetic similarity by the
number of shared IBD (identical-by-descendent) or IBS
(identical-by-state) alleles. Standard quantitative genetic
methods use IBD-derived coefficients to structure pair-
wise phenotypic covariances to obtain estimates of over-
all heritability and linkage [6]. Here, we present a new
approach that uses a pathway-specific GRM (PSGRM)
for each available KEGG pathway to structure a pathway-
specific variance component. A given PSGRM is esti-
mated using the information provided by the complete
set of sequence variant in or near genes of a specific gene
pathway. Using the variance component model imple-
mented in SOLAR, we employ a likelihood ratio test
(LRT) of the PSGRM model against a null model only
using the expected IBD matrix derived from the pedigree
relationships [6]. PSGRM models that deviated from the
null model and accounted for a significant portion of the
trait’s heritability are selected. Genes in those pathways
that are shown to potentially harbor functional genetic
variants could then be tested independently for causality.
We also tested how minor allele frequency (MAF) spec-
tra contribute to the PSGRM estimation. Our approach
reduces the number of multiple independent hypotheses
tested in a WGS and will reduce the computational
burden. The explicit addition of a priori biological knowl-
edge will aid candidate SNP annotation and interpreta-
tion of results from a WGS or GWAS study.

Methods
Genetic Analysis Workshop 18 data acquisition
Our analyses were performed on the Genetic Analysis
Workshop 18 (GAW18) data set using simulated systolic
blood pressure as our trait of interest [7]. All analyses
were performed using the first simulated phenotype
replicate (SIMPHEN.1.csv).

KEGG database acquisition and gene mapping
The latest KEGG database release was obtained (10/
2012). The database information was parsed and each
gene assigned to its respective pathway. A given gene
could be a member of more than 1 pathway. Each gene
was mapped using the longest known splicing isoform
using the latest RefSeq database (09/2012). For each
mapped gene, we defined limits 5 kilobases (kb) upstream

of the transcription start site and downstream of the stop
codon, and all single-nucleotide variants located inside
this region were selected. Using the sequencing data pro-
vided for GAW18, we collected all genotypes for those
variants in all individuals. All variants within a gene were
merged into a single pathway file.

PSGRM estimation
All sequence variation in a gene pathway was used as an
input to KING software [8] for the estimation of the
PSGRM. KING uses an efficient algorithm implementa-
tion that allows fast kinship estimation for all pairs of
individuals. The PSGRMs were calculated using the
“robust” algorithm implementation, taking into account
the potential for underlying genetic heterogeneity.

Gene pathway burden test
A new variance component parameter was introduced
into a standard pedigree-based variance component

model � = σ 2
Total

(
2�h2r + 2Eh2gp + Ie2

)
, where � is the

phenotypic covariance matrix, σ 2
Total is the total phenoty-

pic variance, h2r , h
2
gp, and e2 respectively represent the

proportion of σ 2
Total that can be attributed to the residual

additive effect of polygenes, the gene pathway-specific
variation, and a random environmental effect. Several
critical structuring kernels are employed to model the
covariances between individuals: � is the expected or
theoretical kinship matrix integrated over the genome, E
is the empirically estimated pathway-specific kinship
matrix (the PSGRM), and I is the identity matrix. Such
kernel-based approaches for summarizing the effects of
multiple genetic variants have been proposed decades
previously [9] and has grown in popularity recently
[10,11] Maximum likelihood estimates (assuming a mul-
tivariate normal probability density) and LRTs of the h2gp
parameter were obtained using an extension of the poly-
genic command in SOLAR independently for each gene
pathway [11]. The significance of each gene pathways
variance component estimate was obtained from a LRT
against the null model � = σ 2

Total

(
2�h2r + Ie2

)
. Because

the variance component h2gp is tested on its boundary,
the LRT statistic is distributed as a 50:50 mixture of a
1-degree-of-freedom chi-square and a point of mass zero
[12] although this is conservative [13]. For both models,
we calculated the heritability of systolic blood pressure
using the first simulated phenotypic replicate. We used
sex, age, and smoking status as covariates in our model.
To control for possible population stratification, we also
included as covariates the first 5 genetic principal com-
ponents calculated from a subset of ~29,000 low, mutual,
linkage disequilibrium (LD) SNPs from the GAW18
GWAS data. Those principal components are responsible
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for 5% of the trait’s total variance and were calculated in
117 founder samples using routine prcomp in R [14] and
were then projected to the rest of the genotyped pedigree
so as to not incorrectly capture systematic pedigree
information.

Results
KEGG database organization and initial processing of
GAW18 data
Initially, we downloaded the latest KEGG database
release; this database is composed of 223 gene pathways
for which we could classify 2428 genes located on the
odd-numbered chromosomes. Each gene was mapped
using the hg19 human genome assembly as a reference.
Using the GAW18 WGS data set, we selected all variants
near each gene (see Methods for details) of a gene path-
way and all genotypes were collected. To further evaluate
the sensitivity of the gene-pathway-specific LRT, we cre-
ated 3 additional “virtual” pathways: (a) all causal genes
used in the simulation, (b) major causal gene MAP4 and
9 randomly chosen genes, and (c) MAP4 plus 49 ran-
domly chosen genes. The gene MAP4 exhibits the largest
cumulative effect on the systolic blood pressure (SBP)
phenotype and the number of random genes chosen
mimics typical sizes of gene pathways.

PSGRM estimation and testing
All variants identified in a specific gene pathway were used
as input for KING [8] to estimate a PSGRM using the
robust routine to account for unknown population struc-
ture. This same procedure was applied in all gene path-
ways, including the virtual causal sets. As a proof of
concept, the PSGRMs were compared to the pedigree-
derived theoretical kinship by the comparison of the mean
deviation of all pairwise kinship estimates. Figure 1A is a
scatterplot showing the relationship between the number
of genes in a pathway and the observed mean deviation
for related individuals; Figure 1B shows the same compari-
son for unrelated individuals. Pathways composed by a
larger number of genes tend to show smaller deviations as
they asymptotically become more similar to the theoretical
kinship estimator. Pathways composed by fewer genes
have a more random behavior that illustrates the PSGRM
capabilities of analysing relevant local patterns of allele
sharing between individuals. As in traditional linkage ana-
lysis, deviation between the PSGRM and the theoretically
expected genome-wide kinship matrix is required for the
test to have power. When the 2 panels of Figure 1 are
compared, the observed differences between the kinship
estimates in unrelated individuals (1B) are more pro-
nounced than the kinship estimates in Figure 1A. This
result demonstrates that the PSGRM estimation captures
potentially important information from the unrelated indi-
viduals as expected.

We estimated h2gp for each PSGRM and tested whether
the PSGRM can account for a significant proportion of
trait’s total heritability. The effect of each h2gp term addi-
tion was tested using a LRT model implemented in
SOLAR. All KEGG pathways were tested and p values
obtained were used to create a Q-Q plot representation.
Figure 2 depicts the Q-Q plot shows enrichment of

Figure 1 Deviation of PSGRMs from the expected kinship
matrix. Dispersion plot comparing kinship estimators and the
number of variants in a gene pathway. Panel A was constructed
using the entire set of pairwise comparisons and panel B with only
unrelated individuals.

Figure 2 Q-Q plot of PSGRM-based p values . LRT results
obtained from testing the addition of h2gp term in the variance
component model.
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signal with an observed inflation parameter of l = 1.256.
The GAW18 simulation offers a unique opportunity to
test the sensitivity and specificity of our method. We
created 3 “virtual” gene pathways composed totally or
partially by causal genes that were used in the SBP phe-
notype simulation. The virtual gene pathways had their
PSGRM estimated and their resulting h2gp tested. The
virtual pathways were able to absorb significant SBP
heritability and the CAUSAL_SET made up of all causal
genes shown to be the most significant pathway tested
(Table 1). Two KEGG pathways, “cytokine_interaction”
(2 causal genes in the GAW18 model) and “glutathio-
ne_metabolism” (2 causal genes), showed suggestive
association. Two other associated pathways were “CAU-
SAL_1_TO_9” and “E. coli infection” that have 1 and 0
causal genes, respectively (ie, the latter is a false posi-
tive). Overall, the low false-positive ratio is encouraging,
but the same test needs to be addressed across a larger
number of traits. Our results show that the PSGRM
ratio test was able to detect small genetic signals dis-
persed in larger gene pathway.

Analysis of rare variant contribution to PSGRM testing
To assess the contribution of rare variants to phenotypes
of interest, we selected and tested all variants in a path-
way using 2 different MAF thresholds of 0.05 and 0.01
(Table 2). These low MAF spectrum variants typically
did not improve causal pathway detection. Our focus on
empirical IBD estimates contribute to this finding as
there is less information regarding local IBD in the subset
using only rarer variants. If we had employed a purely
IBS-based kernel, these results might have been substan-
tially different.

Discussion
WGS allows the complete enumeration of genetic varia-
tion. The sensitivity of WGS leads to the detection of a
large number of rare variants not present in a standard
high-density SNP array. Rare variants represent a partial
explanation for the missing heritability paradox as their
abundance and their expected genetic effect sizes are
much higher than common variants [15]. Large extended
pedigrees, like those in the GAW18 cohort, increase the

probability of detecting rare variant effects, as variants that
are rare in the population may be enriched by segregation
in specific lineages [16]. Conventional genome-wide asso-
ciation-style multiple testing of the immense number of
rare variants would require the use of stringent signifi-
cance thresholds and reduce power. These barriers require
the development of alternative methods to reduce the
dimensionality of analysis. Here we present a hybrid
method merging 2 approaches by calculating GRMs in
predefined gene sets pathways. The definition of gene sets
is flexible and allows the use of other sources of informa-
tion, or even a candidate genes set defined by previous
experiments. The PSGRM approach employed involves
the genetic relationship estimation by analyzing local pat-
terns of alleles shared in a gene pathway to reveal latent
pathway-specific relationships across pedigrees and unre-
lated individuals. We focus on IBD estimation but many
different IBS-related kernels could be utilized and should
work better for studies that only have unrelated indivi-
duals focusing on association signal alone. Our IBD-based
test is more similar to an extension of classical quantitative
trait linkage but using empirical IBD estimates and gener-
alizing them beyond a single genomic location. For the
test to have power, there must be differences between the
global IBD estimate and the pathway-specific estimate.
The proposed single-degree-of-freedom test reduces the
computational burden and allows a fast screen of gene
pathways. The definition of a 5-kb region near a gene
should be enable harvesting of a majority of regulatory ele-
ments playing a role in the expression regulation of the
target gene; however, future studies should test larger

Table 1 Likelihood ratio tests of gene pathways. Results of likelihood ratio test using the pathway-specific variance
component term h2gp. The table only shows pathways with p-values lower than 0.01.

Pathway # Causal genes Variance explained h2r h2r p value h2gp h2gp p value

CAUSAL_SET 15 0.2151 0.141 0.0019184 0.095 0.0000002

Cytokine_interaction 2 0.032 0.127 0.0130248 0.131 0.0006748

Glutathione_metabolism 2 0.027 0.221 0.0000136 0.074 0.00306

CAUSAL_1_to_9 1 0.0779 0.248 0.0000019 0.039 0.004348

E. coli_infection 0 0 0.244 0.0000099 0.051 0.0081785

CAUSAL_1_to_49 1 0.0779 0.265 0.0000131 0.038 0.178527

Table 2 Tests of h2gp calculated using different frequency

spectra. Association results of the CAUSAL sets using
variants with different MAF spectra. The columns
“Complete set”, “MAF< 0.05” and “MAF 0.0” represent
respectively the use all variants near genes, all variants
with MAF< 0.05 and all variants with MAF < 0.01.

Gene set Complete set MAF <0.05 MAF <0.01

CAUSAL_1_to_49 0.178527 0.173653 0.0455696

CAUSAL_1_to_9 0.004348 0.000155 0.0111827

CAUSAL_SET 0.0000002 0.168555 0.0548205
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distances also. For any empirically estimated GRM kernel,
LD could be a source of bias and new approaches for cal-
culating GRMs accounting for LD interference should be
tested in the future [17].

Conclusions
The analysis of WGS requires the development of new
statistical and computational methods. Reduction in the
number of hypotheses tested is critically important if rea-
sonably sized samples of families are to identify causal
genes. Our simple random-effect-based pathway-specific
tests leads to potentially powerful tests of gene pathways
that can then be further tested in more detail. The
GAW18 simulated phenotypes offer a unique opportu-
nity for methodological comparison and our method
exhibited promising statistical features and can be easily
extended to any other set of genes defined in an a priori
manner.
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