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Abstract

We apply a multiphase strategy for pedigree-based genetic analysis of systolic blood pressure data collected in a
longitudinal study of large Mexican American pedigrees. In the first phase, we conduct variance-components
linkage analysis to identify regions that may harbor quantitative trait loci. In the second phase, we carry out
pedigree-based association analysis in a selected region with common and low-frequency variants from genome-
wide association studies and whole genome sequencing data. Using sequencing data, we compare approaches to
pedigree analysis in a 10 megabase candidate region on chromosome 3 harboring a gene previously identified by
a consortium for blood pressure genome-wide association studies. We observe that, as expected, the measured
genotype analysis tends to provide larger signals than the quantitative transmission disequilibrium test. We also
observe that while linkage signals are contributed by common variants, strong associations are found mainly at
rare variants. Multiphase analysis can improve computational efficiency and reduce the multiple testing burden.

Background
In pedigree-based studies, discovery of genomic regions
harboring genetic determinants of quantitative traits such
as systolic blood pressure (SBP) has conventionally been
conducted using linkage analysis based on identity-by-
descent allele sharing. In the genome-wide association
studies (GWAS) era of cost-effective high-throughput
genotyping technology, the mapping of the genetic basis
of complex traits/diseases in human populations has
been population-based in unrelated individuals, and lar-
gely case-control or cross-sectional in design. With the
advent of next-generation sequencing technology, inves-
tigators are able to examine each single base pair (bp)
and test for association with a trait, but the massive
amount of variant information available for analysis can
be overwhelming. With the development of techniques

for pedigree-based imputation from sequence data on
selected pedigree members, pedigree-based analysis of
whole genome sequencing data is feasible.
We demonstrate that multiphase analysis in pedigrees

can be an efficient strategy for identifying genetic variants
underlying a quantitative trait, in which region discovery
by linkage analysis of GWAS single-nucleotide poly-
morphism (SNP) markers with high minor allele fre-
quency (MAF) is followed by region refinement with
densely distributed GWAS SNPs and/or fine mapping
with sequence variants in identified regions. Using a
summary phenotype derived from longitudinal measure-
ments of SBP together with GWAS and whole genome
sequencing genotype data from the San Antonio Family
Studies (SAFS) as provided by Genetic Analysis Work-
shop 18 (GAW18), we report pedigree-based linkage and
association analysis conducted to identify genetic variants
underlying SBP. Our multiphase analyses are carried out
in 3 steps, as illustrated by the workflow in Figure 1.
First, we obtain a summary phenotype for each individual
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using the residuals from a censored normal regression
model with a random intercept for each pedigree, where
the censoring indicator is antihypertensive medication. In
the second step, we conduct linkage analysis on chromo-
some 3 with a sample of GWAS SNP markers (MAF ≥
5%). We detect linkage at a locus in a region harboring a
candidate SNP, rs419076 (bp: 169100886, near MECOM,
3q26) identified in a pathway influencing blood pressure
and cardiovascular disease risk by the International Con-
sortium for Blood Pressure Genome-Wide Association
Studies (ICBP-GWAS) [1]. In step 3, we conduct pedi-
gree-based association analysis using sequence data to
fine-map the MECOM genomic region.

Methods
SAFS pedigree data
From a total of 1389 participants in 20 pedigrees, 932
have SBP measurements at 1 or more study exams for up
to 4 exams. Characteristics recorded include sex, year of
exam, age at each exam, current use of antihypertensive
medications, and current tobacco smoking. GWAS geno-
types were assayed in a total of 959 individuals, with a
total of 65,519 GWAS SNPs on chromosome 3 available
for analysis. Among these individuals, 464 were also
sequenced at an average 60 × coverage, resulting in
1,215,399 sequence variants on chromosome 3. For the
remaining 495 individuals, the missing genotypes at the
sequence variants were imputed using a novel popula-
tion-based imputation approach [2]. Because the pro-
gram SOLAR required genotype data, in the focused
association analysis following the linkage scan, we used
the imputed “best guess” sequence genotypes. Subse-
quent analyses ignored imputation uncertainty.

Phenotype adjustment
Antihypertensive medication complicates the analysis of
SBP, because patients prescribed medication tend to have
elevated underlying SBP values. Based on a novel extension
developed by Konigorski et al [3], we treated medication as
a right-censoring indicator such that the unmodified SBP
for an individual under medication is higher than the
observed, and fit a censored normal regression model to
the observed SBP measurements for each exam assuming
noninformative censoring. In addition, we took into
account the between-pedigree variation by incorporating a

pedigree-specific random component. Analyzing each of
the first 3 visits separately, we included sex, exam-specific
age, and smoking status as covariates. Let Y be the
observed SBP and Ŷ be the fitted SBP from the censored
model given exam-specific covariates and pedigree-specific
random effects. For an individual receiving medication, let
Y∗ be the conditional expectation of the underlying SBP
given exam-specific covariates and pedigree-specific ran-
dom effects and assuming that the underlying unmodified
SBP is greater than the observed value, for details see Koni-
gorski et al [3]. We computed residuals at each exam by

Y − Ŷ if an individual was not under medication, and by

Y∗ − Ŷ otherwise. The mean of the residuals at exams 1 to
3, denoted by R, was then used as an adjusted phenotype
for each individual in subsequent stages of linkage and
association analysis.

Variance component linkage analysis
To detect regions with potential loci for SBP, we applied
the variance-component linkage method for pedigree-
based analysis [4]. In an additive polygenic model, the
overall phenotypic covariance matrix � for a pedigree of
n members is partitioned into a locus-specific variance
component (σ 2

qtl), an additive genetic variance attributa-

ble to an unspecified number of remaining loci at
unknown locations in the genome

(
σ 2
a

)
, and an environ-

mental variance component (σ 2
e ). Specifically, the phe-

notypic covariance matrix has the form

� = �σ 2
qtl + 2�σ 2

a + Inσ 2
e ,

where the elements of the structuring matrix for the
locus-specific variance, Π, are proportions representing
the identity-by-descent (IBD) sharing of alleles for each
relative pair at this locus; the structuring matrix for the
additive genetic variance component, 2F, is twice the
kinship coefficient matrix; and the matrix for the var-
iance resulting from unshared environmental effects is
specified by the identity matrix In. To examine the influ-
ence of GWAS SNP density on linkage analysis, we
sampled 3 sets of SNPs. Initially, a total of 988 SNP
markers was randomly sampled from chromosome 3
GWAS SNPs with MAF ≥5%. To allay concerns about
adequacy of SNP density, in the second and third sam-
plings, we randomly sampled 1620 and 2999 SNPs,

Figure 1 Workflow for the multiphase linkage and association analysis of a complex pedigree study with GWAS SNP and whole
genome sequence data.
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respectively, excluding previously sampled SNPs and
using the same MAF criteria. We first performed quan-
titative genetic analysis to create a suitable null model
for each selected marker [4]. Applying the genetic analy-
sis software SOLAR to the sampled GWAS data, we
estimated IBD allele sharing for all pairs of relatives in
each pedigree, using single-marker estimation to ease
computation in the very complex pedigrees. We also
performed 2-point rather than multipoint linkage analy-
sis and computed the log of odds (LOD) score for each
marker. Regions with LOD >1.2 were considered inter-
esting for subsequent fine mapping analyses. For
demonstration purposes, in this paper we focused fine-
mapping analyses on the candidate region 165 to 175
megabases (Mb) on chromosome 3.

Family-based association analysis
In a candidate region on chromosome 3 identified with
some evidence for linkage in the sampled GWAS data
and previously reported in GWAS meta-analysis [1], we
compared the linkage signals to the association analyses
implemented in SOLAR: measured genotype (MG) ana-
lysis and the quantitative transmission disequilibrium
test (QTDT) [5], in which the phenotype, R, is modeled
as a linear combination of fixed effects (ie, genotype
scores) and random effects (ie, polygenic and linkage
components). The genotype scores are decomposed into
between-family (b) and within-family (w) components,
resulting in fixed-effect model E (R) = μ + βbb + βww.
The MG approach estimates regression coefficients with
the constraint bb = bw. The QTDT approach estimates
both bb and bw, and tests whether the within-family
parameter bw is significantly different from 0. QTDT
reflects the correlation between SNP genotype and phe-
notype within families and is robust to population strati-
fication effects [5], which can be a concern for MG, but
QTDT is less powerful than MG. We computed the
IBD allele sharing among pedigree members at each
sequence variant in the candidate region, and then per-
formed association tests simultaneously modeling link-
age as a variance component based on the IBD sharing
estimates. When linkage is present, including the linkage
component in the association analysis helps control type
I error [6].

Results and discussion
Linkage scan
With the first set of 988 GWAS SNPs, evidence for link-
age with SBP on chromosome 3 using combined pedi-
gree data was mainly found in 4 regions: 5 to 12 Mb, 47
to 59 Mb, 89 to 115 Mb, and 165 to 175 Mb (Figure 2),
with a chromosome-wide maximum LOD score of 1.41.
These regions harbor SNP associations identified in a
study undertaken by the ICBP-GWAS [1]. In conducting

sensitivity analysis using 2 additional sets of randomly
sampled GWAS SNPs, we observed multiple linkage
peaks in similar regions. The maximum LOD scores for
the second and third linkage analyses were 1.50 and
1.63. Although differences in the maximum LOD score
among the 3 analyses were not substantial (ie, around
0.23), the maximum LODs did not always correspond to
the same region (Table 1). We obtained the names of
genes nearest these locations using the annotation
report from Nalpathamkalam et al [7].

Association
Based on our linkage results and prior report by ICBP-
GWAS [1], we fine-mapped the 10-Mb chromosomal
region (165 to 175 Mb) surrounding the SNP rs419076 in
the gene MECOM (3q26). Among the 58,651 variants in
this region, 20,211 are common (MAF ≥5%), 10,508 are
low-frequency (1% to 5% MAF), and 27,932 are rare
(MAF <1%). We observed that, as expected, the MG
association analysis tended to provide larger signals than
the QTDT approach (Figure 3). To assess for global infla-
tion of type I error in the MG and QTDT approaches, we
conducted association analysis using the 2999 sample 3
GWAS SNPs. No inflation of type I error was observed
in the Q-Q plots for MG, either with or without a linkage
variance component. However, the observed type I error
rate from the QTDT approach appeared to be slightly
deflated, particularly when linkage was included as a var-
iance component (data not shown). This suggests lack of
population stratification and is consistent with theory
that says the QTDT approach is less powerful than MG
for detecting association. Comparing linkage and associa-
tion results across the 3 variant MAF categories, we
observed that linkage signals were contributed by com-
mon variants (Figure 3 and Table 2, with the max LOD
score observed at bp position 166324439). However,
stronger associations were mainly found at rare variants,
suggesting the linkage peak may correspond to a haplo-
type block harboring rare variants underlying blood pres-
sure. The strongest signal was observed at bp position
172046675 with a MG p value of 1.56 × 10−7 (Table 2).
Because the analysis was conducted in a candidate region
partially selected by independent prior data, we did not
require genome-wide significant association, but appro-
priate criteria in this setting is an open question.

Conclusions
The main purpose of the proposed multiphase design is
to first identify interesting genomic regions for a com-
plex quantitative trait, and then to fine-map those
regions in follow-up studies, reducing both the number
of tests for association conducted at null variants and
the computational processing time. With randomly
sampled common GWAS SNP data for large Mexican
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Table 1 Results of 2-point linkage analysis with LOD >1.20, ordered by position, using 3 sets of randomly sampled
common GWAS SNPs (MAF ≥0.05) from chromosome 3. LOD scores in bold denote values > 1.35 (column 5).

Marker Position (Mb) Position (cM) SNP set LOD (>1.2) Class Gene

rs304094 4.51744 13.9988 2 1.24 Intergenic SUMF1

rs17044432 6.28766 18.6921 2 1.25 Intergenic GRM7

rs2213215 60.64305 82.6846 3 1.43 Intronic FHIT

rs9816856 73.18624 100.8683 3 1.22 Intergenic PPP4R2

rs6798130 74.10858 102.7685 2 1.23 Intergenic CNTN3

rs7631179 82.55674 108.3900 3 1.29 Intergenic GBE1

rs13093396 86.16787 108.8700 2 1.44 Intergenic CADM2

rs9860570 86.28946 108.9715 1 1.24 Intergenic CADM2

rs1598234 94.00416 110.3673 1 1.34 Intergenic NSUN3

rs11719592 100.25710 111.9176 2 1.50 Intronic TMEM45A

rs4928048 100.27040 111.9277 3 1.20 Intronic TMEM45A

rs4618204 101.28150 112.7198 3 1.25 Intronic TRMT10C

rs16844883 108.49870 118.6100 2 1.38 Intergenic RETNLB

rs323629 151.92760 161.0093 3 1.25 Intergenic LOC401093

rs1533913 152.70880 162.0010 3 1.63 Intergenic P2RY1

rs10935963 153.68720 162.6455 1 1.41 Intergenic ARHGEF26-AS1

rs11916399 166.34160 168.2915 1 1.39 Intergenic ZBBX, MECOM*

rs6809553 181.11490 185.8237 3 1.30 Intergenic DNAJC19

cM, centimorgan.

*The linkage signal is also close to the gene MECOM.

Figure 2 Two-point linkage analysis for all pedigrees using 3 sets of randomly sampled GWAS SNPs. The blue, red, and green linkage
profiles are for samples of 988, 1620, and 2999 GWAS SNPs, respectively. The beige and yellow regions correspond to 27.5 ± 5 Mb and 170.5 ±
5 Mb, respectively, and the light gray and light blue horizontal lines denote LOD = 1.0 and LOD = 1.5, respectively.
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American pedigrees from SAFS, we identified 4 linkage
regions for SBP on chromosome 3. Especially for 2-
point linkage, high-density SNP analysis is desirable. In
linkage analysis in an identified region, we observed
higher LOD scores using imputed sequence data com-
pared to GWAS SNP data, particularly for common var-
iants (Figure 3, top panel). In family-based association
analysis of sequence variants, however, we observed
stronger association signals at rare variants compared to
common variants. As is typical in fine-mapping studies,
we examined association with sequence variants under

linkage peaks obtained from a chromosome-wide scan.
Depending on the inherent power in a study, it may be
advisable to establish a fairly liberal criterion for identifi-
cation of linkage regions. Although the linkage strategy
we used reduces the multiple testing burden in phase 2,
it may miss regions of interest that would have been
detected by a GWAS association analysis. For purposes
of comparison, albeit in a single data set, we examined
the results from a complete, dense GWAS scan of chro-
mosome 3 that used mixed models to account for the
pedigree structure [8]. We observed that both strategies

Figure 3 Linkage and association analysis for a 10-Mb region surrounding the MECOM gene using combined pedigrees. The top,
middle, and bottom panels correspond to 2-point linkage, MG association analysis, and QTDT, respectively. Variants with MAF <0.01, 0.01 to 0.05,
and ≥0.05 are indicated by red, green, and blue colors, respectively.
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identified regions near 150 Mb and 175 Mb using a
linkage criterion of LOD >1.0 and a GWAS criterion of
p < 10−5; the chromosome-wide maxima near 150 Mb
agreed quite well. Our linkage scan also identified
regions at other locations, including those near 10, 27,
and 100 Mb, that would have required more liberal
GWAS criteria for identification.
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Table 2 Top 5 linkage signals and top 5 associations with
SBP are indicated in bold in the 165- to 175-Mb region
on chromosome 3 (ordered by position)

Position MAF LOD score MG p value QTDT p value

165794197 0.403 1.54 0.200 0.611

165803609 0.402 1.54 0.215 0.543

165804946 0.400 1.62 0.257 0.522

166324439 0.118 1.63 0.755 0.749

166332595 0.118 1.57 0.637 0.695

167201711 0.0021 0.59 1.04E-04 2.66E-04

167391612 0.0037 0.55 2.94E-05 1.06E-03

172046675 0.0026 0.06 1.56E-07 5.49E-05

172516067 0.0021 0.59 1.58E-05 4.37E-05

175210951 0.0010 0.00 6.27E-07 1.03E-04
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