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Abstract

We conducted linkage analysis using the genome-wide association study data on chromosome 3, and then
assessed association between hypertension and rare variants of genes located in the regions showing evidence of
linkage. The rare variants were collapsed if their minor allele frequencies were less than or equal to the thresholds:
0.01, 0.03, or 0.05. In the collapsing process, they were either unweighted or weighted by the nonparametric
linkage log of odds scores in 2 different schemes: exponential weighting and cumulative weighting. Logistic
regression models using the generalized estimating equations approach were used to assess association between
the collapsed rare variants and hypertension adjusting for age and gender. Evidence of association from the
weighted and unweighted collapsing schemes with minor allele frequencies ≤0.01, after accounting for multiple
testing, was found for genes DOCK3 (p = 0.0090), ARMC8 (p = 1.29E-5), KCNAB1 (p = 5.8E-4), and MYRIP (p = 5.79E-
6). DOCK3 and MYRIP are newly discovered. Incorporating linkage scores as weights was found to help identify rare
causal variants with a large effect size.

Background
Linkage studies have high power to detect loci that have
variants with large effect size, although they often are
rare in the population [1]. In contrast, association studies
generally have high power to detect common variants
with a small effect size for diseases or traits [2]. Recently,
next-generation sequencing techniques have made feasi-
ble sequencing of all exons or the whole genome of an
adequate number of individuals for meaningful results.
Rare variant analysis is challenging because of sequen-
cing-based uncertainties in variant calling, the large
search space of rare variants, and the inherently low car-
rier rate frequencies. Rare variants, however, are quite
common in the general population. Therefore, it could
be helpful to apply linkage analysis on these new DNA
sequencing data to identify rare causal variants with a
large effect size [3]. In the present study, we conducted
linkage analysis using genome-wide association studies

(GWAS) data to identify disease susceptibility loci, then
applied logistic regression models using generalized esti-
mating equations (GEEs) to assess the associations
between hypertension and rare variants of the suscept-
ibility genes in the linked regions.

Methods
GWAS and phenotype data
Linkage analysis was conducted on chromosome 3
GWAS data. A total of 65,519 single-nucleotide poly-
morphisms (SNPs) were genotyped on chromosome 3 for
959 individuals from 20 original pedigrees; of these indi-
viduals, 344 had hypertension and 506 did not. As a
result of the limitations of our computing facility for link-
age analysis, PedCut [4] was used to split large pedigrees
with members greater than 20 bits into smaller pedigrees
to enable analyses by MERLIN [5]. Consequently, we
analyzed a total of 138 pedigrees with 1495 individuals
(missing parents were added in); for the divided pedi-
grees, pedigrees ranged from 3 to 25 individuals. Five
SNPs were removed for failing the Hardy-Weinberg equi-
librium (p value < 10-4) test. The Hardy-Weinberg equili-
brium test was performed using PLINK 1.07 [6] based on
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56 unrelated subjects. A total of 22,056 genotypes with
genotyping errors (genotyping error rate was approxi-
mately 3.51 × 10−4) were further excluded by the MER-
LIN 1.1.2 computing package [5]. Subjects being
diagnosed with hypertension for at least 1 of the 4 time
points were considered as affected.

Linkage and association analysis
Linkage screens on chromosome 3 GWAS data were
conducted using MERLIN 1.1.2; linkage evidence was
assessed based on nonparametric linkage (NPL) log of
odds (LOD) scores by Kong and Cox [7] where identity-
by-descent sharing in affected relative pairs was com-
puted. Because of the heavy computational load from
the tremendous number of markers, linkage analyses
were performed with an interval of 1000 SNPs in 1 run.
Each interval had a 5-SNP duplicate with its following
interval. One-LOD support intervals were constructed
for each linkage peak with NPL LOD scores ≥4.0. Genes
located in the 1-LOD support intervals were identified
and annotated based on the genetic map NCBI build 36.
Rare variants–defined as variants with minor allele fre-
quency (MAF) ≤0.01, 0.03, or 0.05–in each gene were
collapsed, either unweighted or weighted by the LOD
scores, in 2 ways: exponential weighting and cumulative
weighting [8]. Namely, a rare variant i with LOD score
zi was weighted by wi = υi/υm if a subject carried at
least 1 minor allele of SNP i and by, otherwise. Here,

υi = eZ
i for the exponential weighting, υi = �(zi − 2) for

the cumulative weighting, �(·) is the standard normal

cumulative distribution, and υm =
1
m

m∑

i=1

υi, where m is

the total number of rare variants per gene, i = 1,..., m.
For individual k, his or her collapsed rare variants

(CRVs) were then equal to
mk∑

i=1

wi, assuming the total

number of rare variants the individual carries was mk.
The association between hypertension and the CRVs
was assessed by logistic regression models adjusted for
age and gender. The GEE approach implemented in the
SAS computing package (SAS Inc., Cary, NC) was used
to account for within-family correlations in the associa-
tion analysis based on the original 20 families under an
exchangeable covariance structure. Multiple testing cor-
rections were made using the false discovery rate (FDR)
as implemented in SAS.

Results
Figure 1 displays the NPL LOD scores for chromosome 3
GWAS data. The highest peak is located at 143.428
megabases (Mb) with a NPL LOD score of 7.0. Thirteen
support intervals with NPL LOD scores ≥4 and the genes

located in the 1-LOD support intervals were identified
(Table 1). A total of 21 genes are harbored in these
regions. Fifteen (71%) of these 21 genes were identified in
previous linkage analyses for quantitative blood pressure
(Table 1) [9]. As the GWAS map was denser than the
maps in previous linkage studies, the information content
was richer; more regions were identified and their sup-
port intervals were more narrowly based on the current
denser markers [10]. Table 1 also lists the estimates of
CRVs for individual genes with 3 weighting schemes
under MAF ≤0.01. The results for MAF ≤0.03 and MAF
≤0.05 are not shown. The most striking association was
with the gene ZNF621 (estimated effect −0.44, p <1.0E-
30). The effect is from the single variant, rs34412695,
with MAF = 0.00096. This association should be inter-
preted with caution because the significance resulted
from only 1 rare variant with 1 minor allele. A larger
sample size is required to reexamine this finding. The
risk variant(s) in gene ATR (LOD score = 7.0) had MAFs
between 0.01 and 0.03, hence the CRV is significant (p =
0.024) for the MAF ≤0.03 category only. The CRV for
gene DOCK3 has a risk effect (p = 0.0090) comprised of
51 variants with MAF ≤0.01. The significance was
reduced after collapsing with other variants (p = 0.043
for the MAF ≤0.03 category and p = 0.056 for the MAF
≤0.05 category). The CRV for the ARMC8 gene (with 6
variants collapsed) had a significant protective effect (p =
2.27E-5). The CRV (with 16 MAF ≤0.01 variants com-
bined) for the KCNAB1 gene had a significant positive
effect (p = 0.00058); the significance is reduced when col-
lapsing with more variants (p = 0.048 and 0.15 in the
MAF ≤0.03 and MAF ≤0.05 categories, respectively). The
CRV of the MYRIP gene in the MAF ≤0.01 category had
a significant protective effect (p = 1.39E-5), which was
not present in the other 2 categories. In the present
study, the power to detect the collapsed causal variants
with a large effect size from ARMC8 and MYRIP genes,
was improved when incorporating linkage scores as
weights based on the GEE approach. We did not observe
an improvement in power for the collapsed variants with
small effect sizes. Regardless, the ZNF621 (FDR <1E-30),
DOCK3 (FDR = 0.031), ARMC8 (FDR = 0.00013),
KCNAB1 (FDR = 0.0025), and MYRIP (FDR = 0.00012)
genes remained significant after a multiple testing correc-
tion, regardless of the weighting schemes–the FDRs pro-
vided are for the unweighted CRV.

Discussion
Linkage scores from GWAS data can be useful to narrow
down regions for detecting rare variants associated with
disease. Therefore, using linkage scores as weights for
collapsing rare variants may improve the power of detec-
tion. Although in the present study, the effects of rare
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variants were assumed to be in the same direction during
collapsing, it is important to take the directions of effects
into consideration during collapsing, as the effects of sig-
nificant variants can be diluted or eliminated when col-
lapsed with other variants having neutral or opposite
effects. One way to eliminate this problem is to test the
variation of individual variant effects, rather than their
mean effects, in mixed-effects models [11]. Studying
CRVs from different collapsing categories helped identify
the MAF category yielding consistent results over genes,
because the significance of CRV depends on the thresh-
olds for collapsing. Intuitively, a variant may be func-
tional if its MAF is below a certain threshold; therefore, a
varying-threshold approach has proved to be helpful with
the identification of functional variants [12]. Incorporat-
ing a varying-threshold approach may improve power to
detect functional rare variants. In general, the changes in
effect sizes resulting from collapsing additional variants
or weighting decreased as MAF thresholds increased.
Collapsing additional variants often reduced the effect
size (results not shown), whereas weighting usually
increased the effect size, particularly when the MAF

threshold was small. In addition, the significance of
ZNF621 with an effect size of −0.44 (SE = 0.021) under
MAF ≤0.01 resulted from only a single allele. The effect
size changed to 0.045 (SE = 0.057) and became insignifi-
cant after collapsing with the other 2 variants under
MAF ≤0.03 or ≤0.05. This observation suggested the
necessity to carefully reexamine and interpret the signifi-
cant result that was based on only a few rare variants.
Accounting for multiple testing, the CRVs from the fol-

lowing 4 genes were identified for hypertension: DOCK3,
ARMC8, KCNAB1, and MYRIP. KCNAB1 was the only
gene previously identified in a GWAS, specifically for
being associated with blood pressure. The other 3 genes
were novel for hypertension/blood pressure in the pre-
sent association analysis. Our proposed method focused
on rare variant detection; common variants were not ana-
lyzed in the association analyses. Therefore, we did not
expect to have a large proportion of replicate findings
from GWAS.
The 20 families varied in size and ranged from 22 to 86

individuals, so it may not be reasonable to use an
exchangeable correlation structure in the GEE approach.

Figure 1 NPL LOD score on chromosome 3 of GWAS data. cM, centimorgan.
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However, independent and exchangeable correlation
structures involving less covariance parameters were bet-
ter options than others given such a small number of
families. An exchangeable correlation structure was
adopted here as it is often a more appropriate correlation
structure for a family study than other structures [13].
GEE approaches have robust variance estimators for
extended pedigrees in a genome-wide association study
setting [14,15]. However, because of the limited sample
size in the present study, some of the collapsed variants
were not as robust as the others (data not shown). After
applying an independent correlation structure, we
observed that the KCNAB1 gene became insignificant,
whereas the genes GBE1 and GK5 were significant under
the unweighted scheme, accounting for multiple testing.
In such conditions, it may be helpful to apply a statistical
method to select an appropriate variance-covariance
structure [16]. This possibility will be investigated in a
future study.

Conclusion
In summary, it is helpful to apply linkage analysis to
GWAS or sequencing data, and then incorporate the
linkage information into association analyses under

certain scenarios. The benefits of using this method
were seen particularly in cases where the collapsed var-
iant had a large effect size. A powerful collapsing
method should consider the effect size and direction of
a rare variant, as well as the threshold of MAF during
collapsing. We are currently systematically studying and
modifying this proposed method under different scenar-
ios to improve its power to detect functional rare
variants.
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30
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†Linkage (L) and/or GWAS (G) hits for quantitative blood pressure in the previous studies.
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