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Abstract

Identifying genetic variants associated with complex diseases is an important task in genetic research. Although
association studies based on unrelated individuals (ie, case-control genome-wide association studies) have
successfully identified common single-nucleotide polymorphisms for many complex diseases, these studies are not
so likely to identify rare genetic variants. In contrast, family-based association studies are particularly useful for
identifying rare-variant associations. Recently, there has been some interest in employing multilevel models in
family-based genetic association studies. However, the performance of such models in these studies, especially for
longitudinal family-based sequence data, has not been fully investigated. Therefore, in this study, we investigated
the performance of the multilevel model in the family-based genetic association analysis and compared it with the
conventional family-based association test, by examining the powers and type I error rates of the 2 approaches
using 3 data sets from the Genetic Analysis Workshop 18 simulated data: genome-wide association single-
nucleotide polymorphism data, sequence data, and rare-variants-only data. Compared with the univariate family-
based association test, the multilevel model had slightly higher power to identify most of the causal genetic
variants using the genome-wide association single-nucleotide polymorphism data and sequence data. However,
both approaches had low power to identify most of the causal single-nucleotide polymorphisms, especially those
among the relatively rare genetic variants. Therefore, we suggest a unified method that combines both approaches
and incorporates collapsing strategy, which may be more powerful than either approach alone for studying
genetic associations using family-based data.

Background
Identifying genetic variants associated with complex dis-
eases is an important task in genetic studies, including
genome-wide association (GWA) studies and whole-gen-
ome sequencing studies. Although association studies
based on unrelated individuals (ie, case-control GWA

studies) have successfully identified common single-
nucleotide polymorphisms (SNPs) in many complex dis-
eases, these studies are not so likely to identify rare
genetic variants. In contrast, family-based association
studies have the ability to identify rare variants. More-
over, a family-based study design can avoid the problem
of population stratification, tend to be more homoge-
neous regarding early exposure to environmental factors,
and test both linkage and association [1,2].* Correspondence: jianwang@mdanderson.org
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Multilevel models are statistical models with para-
meters that vary at more than 1 level [3] and have been
widely used in social, behavioral, business, marketing,
and economic studies in which the empirical data exhibit
a hierarchical structure. Recently, there has been some
interest in employing multilevel models in family-based
genetic association studies [2,4]. However, the perfor-
mance of multilevel model analysis in family-based
genetic association studies, especially for longitudinal
family-based sequence data, has not been fully investi-
gated. Consequently, in this study, our aim was to exam-
ine the performance of multilevel model analysis in
family-based association study, compared with that of the
more commonly used family-based association test
(FBAT) [5,6]. We investigated the powers and type I
error probabilities of both approaches using simulated
GWA, sequence, and rare-variants-only data provided by
Genetic Analysis Workshop 18 (GAW18), with knowl-
edge of the simulation model.

Methods
Simulation data
For GAW18, 200 replicates of simulated longitudinal phe-
notype data were available that had been generated utiliz-
ing the real pedigree structures, the imputed sequence
data, and distributions of phenotypes [7]. The available
phenotypes were systolic and diastolic blood pressure
(SBP and DBP), hypertension, and smoking status, which
were simulated for 849 individuals at 3 time points, with
no missing values. The available covariates were age, sex,
and use of antihypertensive medications. We investigated
the SBP and DBP measures. Because they had been
adjusted according to medication use in the simulation,
we did not perform further adjustments in our analyses.
To investigate the powers and type I error rates of both

the multilevel model and the FBAT approach, we selected
causal and noncausal genetic variants, respectively, using
data from GWA and sequence studies. Based on the pro-
vided answers, we found that there were 1457 causal
genetic variants across all available chromosomes, of
which 1020 variants were causal for SBP and 1215 variants
were causal for DBP on the basis of the sequence data.
Among these causal genetic variants, 149 were available in
the GWA SNP data set, of which 105 SNPs were causal
for SBP and 117 SNPs were causal for DBP. We also ana-
lyzed the relatively rare variants (minor allele frequency
[MAF] < 0.05) separately. We found that among all 1457
causal genetic variants, 1019 variants were relatively rare;
of those, 722 were causal for SBP and 844 were causal for
DBP. To assess type I error rates, we selected the noncau-
sal SNPs that were not in linkage disequilibrium (LD) with
any causal variants (r2 < 0.02 for sequence data and r2 <
0.01 and MAF >0.05 for GWA data) to ensure no indirect
associations. To assess rare variants using sequence data,

we selected noncausal variants with a MAF of <0.05. We
assumed an additive genetic model for all variants in our
analyses. We performed the multilevel model and FBAT
analyses on a single variant at a time.

Multilevel model
Intraclass correlation refers to correlation among obser-
vations within a higher-level unit (eg, family). In general,
the statistical significance of the intraclass correlation
coefficient (ICC) is tested to evaluate the degree of this
correlation and, therefore, is used to assess whether a
multilevel model is necessary in the study of a hierarchi-
cal data set [3]. In our study, on the basis of the esti-
mated ICCs in the simulated replicates, we found that
the data using sibships as the higher-level unit had
much higher ICCs than that using families as the
higher-level unit (average ICC, 35% for sibships vs. 3%
for families). Therefore, we considered sibships in the
multilevel model analysis as the higher-level unit, which
resulted in 741 individuals within 310 sibships. Further-
more, we used a likelihood ratio test to compare the 2-
level longitudinal data (individuals and 3 longitudinal
data points for each individual) with the 3-level longitu-
dinal data that included sibships (sibships, individuals,
and 3 longitudinal data points for each individual) and
found that the 3-level model was statistically a better fit.
Additional likelihood ratio tests were performed to
determine the inclusion or exclusion of other covariates.
We found that age and sex were statistically significant
and therefore included them in the model. We also per-
formed principal component analysis to test for popula-
tion stratification with the use of EIGENSTRAT 3.0 [8].
We used approximately 10,000 GWA SNPs that were not
in LD with any of the 149 causal SNPs (r2 <0.02). We
included the top 10 largest principal components (PCs)
as covariates in our analyses. The final, 3-level model we
obtained was Yijk = b0 + b1 × SNPij + b2 × SEXij + b3 ×
AGEijk + a1 × PC1ij +...+ a10 × PC10ij + µi + τij + eijk,
where Yijk is the SBP or DBP value at time point k = 1, 2,
or 3 for individual j = 1, ..., 741 within sibship i = 1, ...,
310. bu, u = 0,..., 3, and av, v = 1,..., 10, are the coefficients
(fixed effects) of the intercept and slopes of different cov-
ariates, and µi, τij, and eijk are the error terms (random
effects) between sibships, between individuals within sib-
ships, and between time points within individuals,
respectively. The multilevel model analyses were con-
ducted using R package lme4 [9].

FBAT
The FBATs for all the causal and noncausal genetic var-
iants were conducted using software package FBAT
2.0.4 [5,6]. The FBAT software implements a broad
class of FBATs based on an extension of the transmis-
sion disequilibrium test approach, in which alleles

Wang et al. BMC Proceedings 2014, 8(Suppl 1):S30
http://www.biomedcentral.com/1753-6561/8/S1/S30

Page 2 of 7



transmitted to affected offspring are compared with the
expected alleles among offspring [5]. We employed the
conventional univariate FBAT approach (using the first
time point only), which uses only the within-family
information to investigate the phenotype-marker asso-
ciation based on the single-marker analysis. As in the
multilevel model analysis, 741 individuals were included
in the FBAT analyses. We also conducted FBAT analysis
using all 849 individuals and obtained very similar
results (data not shown). We analyzed SBP and DBP
phenotypes simulated for only the first time point when
applying the FBAT approach. For the purpose of com-
parison, we included age, sex, and the top 10 PCs as
covariates in the analysis, that is, we assessed residuals
of SBP and DBP by accounting for all covariates and
employed the residuals as the phenotypes of interest in
the analyses. We further used the standard offsets mini-
mizing the variance of the test statistics that were
internally calculated by the FBAT.

Results
We investigated powers and type I error rates for the
multilevel model and FBAT approach using 3 data sets:
(a) GWA SNP data, in which most of the SNPs are rela-
tively common (MAF >0.05); (b) sequence data, which
include rare and common genetic variants; and (c) rare
sequence data, which include only rare genetic variants
(MAF <0.05). All the results were based on the 200
simulated replicates.

Type I error rates
All the results were based on a nominal significance
level of 0.05. We did not perform multiple testing cor-
rections owing to the small number of replicates (200).
For the GWA SNP data, we employed 246 noncausal
SNPs with MAF > 0.05 that were not in LD (r2 < 0.01)
with any of the 149 causal SNPs. When using SBP as
the phenotype of interest, we found that of the 246 non-
causal SNPs, 76 SNPs in the multilevel model analysis,
and 77 SNPs in the FBAT approach had inflated type I
error rates (ie, more than 10 replicates [out of 200 repli-
cates] with p values < 0.05). The average type I error
rates across all noncausal SNPs were 0.05 (SE = 0.05)
for the multilevel model and 0.047 (SE = 0.035) for the
FBAT approach. Therefore, the type I error rates for
both approaches are comparable for the GWA SNP data
(ie, common variants). For the sequence data (rare and
common variants), we employed 13,440 noncausal
genetic variants that were not in LD (r2 < 0.02) with any
of the 1457 causal variants. Using SBP as the phenotype
of interest, of the 13,440 noncausal variants, we
observed 4357 variants with inflated type I error rates
using multilevel model analysis and 3958 variants with
inflated type I error rates using the FBAT approach.

The average type I error rates across all noncausal var-
iants were 0.06 (SE = 0.074) for the multilevel model
and 0.046 (SE = 0.041) for the FBAT approach. From
the noncausal genetic variants in the sequence data set,
we selected 218 variants with MAF < 0.05 (ie, rare var-
iants). Using SBP as the phenotype of interest, of these
218 variants, we observed 68 variants with inflated type
I error rates using multilevel model analysis, with an
average type I error rate of 0.058 (SE = 0.075). The pro-
portion of variants with inflated type I error rates and
the average type I error rate was very similar to that in
the studies of the first 2 data sets. However, for the
FBAT approach, only 2 variants had inflated type I error
rates; the average type I error rate using the FBAT
approach to analyze rare variants was 0.007 (SE = 0.013).
Because the type I error rates of the 2 approaches for the
study of rare-variants-only data are not comparable, we
conducted the power calculations for both approaches by
adjusting for their type I errors. Specifically, using
p values from the 200 replicates for noncausal variants
(null distribution of p values), we identified thresholds
for the multilevel model and FBAT approach that corre-
spond to the controlled type I error rates and then com-
puted powers based on these thresholds. We also
investigated type I error rates using DBP as the pheno-
type of interest and obtained similar results (data not
shown).

Power comparisons
The power comparison results of the multilevel model
and single-time-point FBAT approach as a function of
MAFs of genetic variants are shown in Figures 1 and 2
for SBP and DBP, respectively. Both figures show the
powers of 2 approaches for each of the 3 data sets with
and without Bonferroni corrections. The Bonferroni-cor-
rected significance levels differed between phenotypes
and between data sets because the number of causal var-
iants differed between those scenarios. For example, in
the GWA SNP data, 105 SNPs were causal for SBP and
117 SNPs were causal for DBP; therefore, the Bonferroni-
corrected significance levels were 0.05/105, or 4.8 × 10−4,
for SBP (Figure 1B) and 0.05/117, or 4.3 × 10−4, for DBP
(Figure 2B).
From the power results for SBP, we can observe that for

most of the causal genetic variants, the multilevel model
analysis had powers relatively higher than or similar to
those of FBAT when using the GWA SNP data set (see
Figure 1A) and the sequence data set (see Figure 1C).
When using the rare-variants-only data set (see Figure
1E), both approaches had very little power for identifying
almost all the causal variants (less than 20% at the 0.05 sig-
nificance level). When the Bonferroni-corrected signifi-
cance levels were used (see Figure 1B, D, and F), both
approaches had almost no power to identify any causal
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variants. Moreover, the MAFs of the variants did not sub-
stantially affect the power in either approach. Meanwhile,
the power results for DBP were very similar to those for
SBP in all data sets (see Figure 2).

We also investigated the causal variants with power of
at least 20% for both the multilevel model and FBAT
approach (data not shown). Most of the causal genetic
variants were removed from this set because the powers

Figure 1 Powers of the multilevel model and the FBAT (the first time point only) using DBP. A and B, results obtained using GWA SNP
data at 0.05 and Bonferroni-corrected significance levels, respectively; C and D, results obtained using sequence data at 0.05 and Bonferroni-
corrected significance levels, respectively; E and F, results obtained using rare-variants-only data at 0.05 and Bonferroni-corrected significance
levels, respectively. FBAT, family-based association test; MAF, minor allele frequency; MM, multilevel model. Red circles, results from MM; blue ×
marks, results from FBAT.
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using either approach were less than 20%. However,
interestingly, for the rest of the causal variants, multile-
vel model analysis had higher power than the FBAT
approach for almost all of them.

We further investigated the relationships between
power, effect size (unit = mm Hg), and MAF using the
GWA SNP data set with SBP as the phenotype of inter-
est. We found that variants with very high effect sizes

Figure 2 Powers of the multilevel model and the FBAT (the first time point only) using SBP. A and B, results obtained using GWA SNP
data at 0.05 and Bonferroni-corrected significance levels, respectively; C and D, results obtained using sequence data at 0.05 and Bonferroni-
corrected significance levels, respectively; E and F, results obtained using rare-variants-only data at 0.05 and Bonferroni-corrected significance
levels, respectively. FBAT, family-based association test; MAF, minor allele frequency; MM, multilevel model. Red circles, results from MM; blue ×
marks, results from FBAT.
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could be identified with high power for both approaches;
for example, rs11711953 had an effect size of −9.9107,
and both approaches had powers of almost 100% to iden-
tify this variant at a 0.05 significance level; however,
when the Bonferroni correction was applied, the FBAT’s
power decreased dramatically (85.5%), while the multile-
vel model’s power remained at 100%. We also observed
that both approaches had relatively low power to identify
causal variants with high effect sizes but low MAFs and
relatively high power to identify causal variants with low
effect sizes but high MAFs, as has been shown in our pre-
vious study [10]. For example, for SNP rs11465293,
which had an effect size of −1.1227 for SBP and a MAF
of 0.0148, the powers were only 39.5% for the multilevel
model and 15.5% for FBAT, whereas for variant
rs1131356, which had an effect size of 1.0007 for SBP
and MAF of 0.4947, the powers were 95% and 48%,
respectively.

Discussion
It is natural to consider the use of multilevel modeling
for family studies because children are nested within
families [11-14]. Recently, some studies have applied
the multilevel model (or mixed model) to account for
the hierarchical structure of families, using either
families or sibships as the higher levels in the study;
however, these studies did not involve longitudinal
family-based data [2,15,16]. Luan et al [4] employed a
3-level model to evaluate the association between can-
didate genes and weight and body mass index based on
Framingham longitudinal family data, using families as
the highest level in the analysis. However, the perfor-
mance of the multilevel model approach in identifying
sequence-based genetic markers associated with com-
plex diseases using family-based longitudinal data has
not been fully investigated. In this study, using the
simulated data available in GAW18, we investigated
the performance of the multilevel model and compared
its performance with that of the FBAT approach by
examining the powers and type I error probabilities of
both approaches. We did not include any longitudinal
interaction term, such as interaction of a genetic variant
with age, in our multilevel models because of the limited
power to assess such interactive effects in this study. Nota-
bly, we tested SBP and DBP phenotypes for only the first
time point in the FBAT analyses. A more commensurate
comparison would be afforded by using a longitudinal test
such as FBAT-GEE or FBAT-LC. Another alternative
approach could use averaging measures over 3 different
time points for use in the FBAT approach; however, we
did not use this averaging approach in our analyses because
of the missing values in the data.
We considered using 3 different data sets, including

GWA SNP data, sequence genome data, and rare-

variants-only data. We observed that the multilevel
model had consistent type I error results for all 3 data
sets; in all the scenarios, approximately 30% of the non-
causal genetic variants had inflated type I error rates,
and the average type I error rates across all noncausal
genetic variants were controlled at a 0.05 significance
level. However, the FBAT approach had different pat-
terns of type I error rates for the different data sets. The
type I error rates of the FBAT for GWA SNP data and
sequence data were very similar and comparable to
those of the multilevel model (~30% were inflated), but
the type I error rates of FBAT for rare variants only
were quite conservative. Therefore, for the purpose of
power comparisons, we calculated the powers of the
multilevel model and the FBAT approach by adjusting
for their type I error rates when studying the rare var-
iants only. The multilevel model had relatively higher
power than FBAT for most of the causal genetic variants
in the GWA SNP data and sequence data. However,
both approaches had poor power to identify most of the
causal variants, even those with large effect sizes, espe-
cially the relatively rare variants.
For future studies, we recommend a unified method

combining both the multilevel and FBAT approaches,
which may be more powerful than either approach alone
for genetic association studies using family-based data.
For the rare variants analysis, we can also employ the
most commonly used strategy of collapsing methods,
which combines the effects of multiple rare variants
using a weighted linear combination and treats the com-
bined variable as one variant in the analysis. This strategy
has been used in family-based association studies, for
instance, in the FBAT-Rare method, which linearly com-
bines rare variants in a single gene [17]. We would con-
sider incorporating the collapsing strategy into a
multilevel model and further combining the multilevel
model and FBAT-Rare approaches into a unified method
for genetic association studies using family-based data.
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