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Abstract

Family data and rare variants are two key features of whole genome sequencing analysis for hunting the missing
heritability of common human diseases. Recently, Zhu and Xiong proposed the generalized T2 tests that combine
rare variant analysis and family data analysis. In similar fashion, we developed the extended T2 tests for longitudinal
whole genome sequencing data for family-based association studies. The new methods simultaneously incorporate
three correlation sources: from linkage disequilibrium, from pedigree structure, and from the repeated measures of
covariates. We assess and compare these methods using the simulated data from Genetic Analysis Workshop 18.
We show that, in general, the extended T2 tests incorporating longitudinal repeated measures have higher power
than the single-time-point T2 tests in detecting hypertension-associated genome segments.

Background
Compared with traditional genome-wide association stu-
dies (GWAS), whole genome sequencing (WGS) is a
more efficient way of finding the missing heritability of
diseases [1]. While GWAS are mostly based on microar-
ray genotyping, which can discover only common
genetic variants, WGS is able to reveal rare and struc-
tural variants, which are crucial factors behind disease
phenotypes [2]. As the cost of sequencing decreases sig-
nificantly, we expect that WGS will become increasingly
predominant in the hunt for novel disease genes.
Most of the recent discoveries from sequencing stu-

dies were based on the Mendelian trait model [3].
Genetic association studies based on the complex trait
model are challenging because of limited sample size as
well as the new properties of sequencing data. WGS
data are distinct from GWAS data in two major aspects.
First, WGS provides a huge number of rare variants.
Even with large allelic effects, caused by very small
minor allele frequencies (MAFs), the association tests
between single rare variants and the trait are less power-
ful and unreliable [4]. Second, family designs play a cri-
tical role in WGS. Because of its relatively high cost,

WGS tends to exploit families of patients, so that the
rare causal variants are likely enriched through cotrans-
mission of the disease [5]. Furthermore, the pedigree
structure allows statistical imputation of the genotypes
at no experimental cost, which potentially increases the
statistical power [6,7].
In a recent celebrated work, Zhu and Xiong proposed

a set of generalized T2 tests for family-based WGS data
[8]. These methods simultaneously address the correla-
tions among genetic variants (i.e., linkage disequilibrium
[LD]) and the correlations among family members (i.e.,
kinship). Rare-variant collapsing procedures [9,10] are
also integrated into the tests. However, these methods
cannot incorporate covariates and do not address the
correlation structure for longitudinal repeated measures.
In this study, we further extended the methodology of
the T2 tests to address these limits. By applying these
methods to an analysis of the Genetic Analysis Work-
shop 18 (GAW18) simulation data, we showed that the
asymptotic null distributions of Zhu and Xiong [8] are
problematic in controlling the type I error rate, and that
our extended methods are likely more powerful for
longitudinal data.
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Methods
Generalized T2 tests for family data
Zhu and Xiong [8] showed that the covariance as a result
of both LD and kinship could be explicitly expressed as a
Kronecker product of the corresponding covariance
matrices. Following the idea of Hotelling’s T2 test [11,12],
the authors proposed a generalized T2 test that incorpo-
rates these covariance matrices, which are estimated
separately by using the same data. Depending on various
strategies of collapsing of rare variants, here we consider
three generalized T2 tests of Zhu and Xiong.
T2: The genotypes of rare variants between adjacent

common variants are summed up, and one covariance
matrix is estimated for both common and collapsed rare
variants.
CMC.ZXpaper (CMC test): The rare variants are col-

lapsed in the same way as above, but the covariance
matrices are estimated separately for common and rare
variants (assuming they are uncorrelated).
CMC.ZXcode: Rare variants are collapsed by the max-

imum of their genotypes, and one covariance matrix is
estimated for both common and collapsed rare variants.
This strategy follows the R function pedCMC of Zhu
and Xiong (https://sph.uth.edu/hgc/faculty/xiong/soft
ware-D.html).

Extended T2 test for family data with longitudinal
repeated measures
Building on the idea of Zhu and Xiong, we further extend
the generalized T2 tests to account for the longitudinal
repeated covariates. Figure 1 shows the data structure
and the idea of the extension. Specifically, the extended
T2 tests compare the blocks of common variants, rare

variants, and covariates with repeated measures in cases
and in controls, while simultaneously accounting for the
correlations among genetic factors, among pedigree indi-
viduals, and among longitudinal repeated measures. The
response is the occurrence of the event at any of the
measurement points.
Following the notations in Figure 1, let nc be the num-

ber of the cases, nd be the number of the controls, and
n = nc + nd. The genotype column vector of the tth com-
mon variant is Zt = (Zt

1, . . . ,Z
t
n)

′, the aligned column
vector of all T common variants is represented by

Z = (Z1′, . . . ,ZT ′)′. Similarly, for the collapsed genotypes
of rare variants, the genotype column vector of the sth
rare variant is Vs = (Vs

1, . . . ,V
s
n)

′, and V = (V1′, . . . ,VS ′)′

for totally S rare variants. Considering the covariates with
longitudinal repeated measures, the column vector of the
cth covariate at the jth repeated measurement point is

Acj = (Acj
1 , . . . ,A

cj
n )′, and the aligned column vector is

A = (A11′, . . . ,A1J ′,A21′, . . . ,A2J ′, . . . ,AC1′, . . . ,ACJ ′)′ for totally
C covariates, each measured for J times. Similarly, the row
vectors are denoted as follows. For i = 1, . . . ,n, the vectors
Zi = (Z1

i , . . . ,Z
T
i )

′ are the rows in the block of common
variants, the row vectors Vi = (V1

i , . . . ,V
S
i )

′ are for rare var-
iants, and Ai = (A11

i , . . . ,A1J
i ,A

21
i , . . . ,A2J

i , . . . ,A
C1
i , . . . ,ACJ

i )′

are for longitudinal covariates. The row average in
cases is Z̄c =

∑nc
i=1 Zi/nc, and that in controls is

Z̄d =
∑n

i=nc+1
Zi/nd. The row averages for rare variants and

covariates are obtained analogously.
The idea of the extended T2 test is simply to compare

the difference between the row average of the case blocks
and the row average of the control blocks. Let
η = (Z′,V ′,A′)′. The difference between row averages can

Figure 1 Data structure for composing the extended T2 tests. Data contain 3 blocks: common variants, rare variants, and longitudinal
covariate measures. The statistics integrate the correlations among both rows and columns, and test whether there exists a significant difference
between the row vector mean of the cases and that of the controls.
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be written in terms of η. That is

Hη =
ncnd
n

⎛
⎝
Z̄c − Z̄d

V̄c − V̄d

Āc − Ād

⎞
⎠ , (1)

where if we define Dr = (u1, . . . , un)′, with ui = 1 for
cases i = 1, . . . ,nc and ui = 0 for controls i = nc + 1, . . . , n,
and denote 1 as a vector of 1 of length n and I(k) as an
identity matrix of dimension k, then the matrix

H =

⎛
⎜⎜⎜⎝

I(T) ⊗ (Dr − nc
n
1) 0 0

0 I(S) ⊗ (Dr − nc
n
1) 0

0 0 I(CJ) ⊗ (Dr − nc
n
1)

⎞
⎟⎟⎟⎠ . (2)

Following the idea of the generalized T2 test,
the extended T2 test is T2 = (Hη)′�−1 (Hη) , where
� = Var (η) ., � = Var (η) .
The key problem is to estimate �. Following the

assumption of Zhu and Xiong [8] that Z and V are
independent, we consider two cases. In the first case,
assume A is also independent with Z and V . Then
Var (η) = � = diag(�Z,�V ,�A), where by �Z = Var (Z) = �Z ⊗ �

and �V = Var (V) = �V ⊗ �.
�Z and �V are the covariance matrix among the ele-

ments in Zi and Vi, respectively (e.g., the LD among the
genetic variants), � is the kinship matrix, and ⊗ denotes
the Kronecker product. For the covariate block, we con-
sider �A = Var (A) = �A ⊗ �∗, where �A is the covar-
iance matrix among the elements Ai, and �∗ is a matrix
that captures the correlations among individuals in
terms of environmental covariates.
To better account for the heterogeneity of the data in

cases and in controls, we applied the method in Hotell-
ing’s T2 test for estimating the covariance matrix (which
is different from equation (6) in Ref. [8]). Then equation
(3) is simplified to

T2 =
(ncnd

n

)2

⎡
⎢⎣ (Z̄c − Z̄d)′�̂−1

Z

(
Z̄c − Z̄d

)
+

(
V̄c − V̄d

)′
�̂−1

V

(
V̄c − V̄d

)
(
Dr − nc

n
1
)′

�
(
Dr − nc

n
1
) +

(
Āc − Ād

)′
�̂−1

A

(
Āc − Ād

)
(
Dr − nc

n
1
)′

�∗
(
Dr − nc

n
1
)

⎤
⎥⎦ . (3)

We consider two simplification assumptions: (a)
�∗ = I indicates that covariate variables among indivi-
duals are independent, considering the individual depen-
dence has been captured by the genetics; and (b) �∗ = �
indicates that covariate variables among individuals have
the similar dependence pattern as that according to
genetics (e.g., children may be more likely to smoke if
parents do, or the age of children is correlated with the
age of parents). According to the various rare-variant
collapsing strategies in the above generalized T2 tests by
Zhu and Xiong [8], the corresponding extended T2 tests
are denoted T2.longi, CMC.ZXpaper.longi, and CMC.
ZXcode.longi, respectively.

Asymptotic and permutation tests
Zhu and Xiong derived asymptotic chi-square distribu-
tion for the null. In their paper [8], the degrees of free-
dom (DF) equal the number of variants; in their R code,
the DF equal the rank of data matrix. The latter is bet-
ter but still gives inflated p values as shown below.
Thus, we applied a permutation test for the type I error
rate being well controlled. Specifically, let T2

g and T2
gl,

l = 1, . . . , L, l = 1, . . . , L, denote the test statistics of the
gth genome window from the original data and from the
lth permutation, respectively. The empirical p value

for the gth window is pg = #
{
T2
gl ≥ T2

g , l = 1, . . . , L
}
/L,

where L =1000. Because the target is to find the associa-
tions with genetic variants, not with the covariates, the
permutations are applied only to the genotype data to
retain the relationship between response and the
covariates.

Results
For evaluating the above methods, we used the “dose”
genotype data of 1,215,399 single-nucleotide variants
(SNVs) on chromosome 3 and the 200 simulation repli-
cates of hypertension outcomes and covariates (age,
hypertension medicine use, smoking status). As an arbi-
trary, yet simple, way to group variants, we split chr3
into 19,080 windows, each 10 kilobase pairs (kbp) long.
In each window, rare variants (MAF <0.05) between
adjacent common variants were collapsed, leaving
654,415 genetic factors (common or rare variants, or
collapsed rare-variant groups) to be analyzed. The aver-
age number of genetic factors contained in the windows
is 34.3, the median is 32, the minimum is 1, and the
maximum is 330. For the simulated phenotypes, the
number of individuals is 849 in 20 families, where the
family sizes are from 21 to 74, with the mean 42.45 and
the median 36.5. There are 188 simulated true SNVs
contained in 129 true windows (1, 3, 7, 32, and 86 windows
contain 5, 4, 3, 2, and 1 true SNVs, respectively) on chr3.
The knowledge of these true SNVs was used only for eval-
uating the power of these association tests, not for design-
ing data analysis strategy.
To assess the asymptotic null distributions of the tests

provided in Zhu and Xiong [8], we obtained the asymptotic
p values of these tests for all false windows in chr3. The
Q-Q plot of Figure 2 shows that all three methods have
inflated p values with large genomic inflation factors λ [13].
For example, when one chooses a p value cutoff of 0.05,
the actual (empirical) error rate is approximately 0.1. At
the same time, the following results show that permutation
test controls the type I error rate well. Thus, the inflated
type I error rate is likely caused by the inappropriate
asymptotic null distributions, not by possible stratification.
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We studied the power of these tests in detecting true
windows over chr3. Based on the phenotype data in the
simulation replicate 1, the right panel of Figure 3 shows
the receiver operating characteristic (ROC) curve for

power (estimated by the true positive rate) over a variety
of p value cutoffs. In general, the power is low at small or
moderate p values. This phenomenon indicates that the
sample size is still relatively too small for detecting many
weak genetic effects simulated in the data. At the same
time, it is clear that the 3 extended T2 tests that incorpo-
rate longitudinal information are significantly better than
the generalized T2 tests that only consider the measures at
the first time point. Because the two setups: �∗ = I and
�∗ = � in (3) led to similar results, we only report that by
�∗ = I for simplicity. The left panel of Figure 3 shows that
the permutation test controls the type I error rates well
for all methods.
To compare the overall capabilities of these tests, we

studied their power (i.e., true positive rates) in detecting
each of all windows over 200 simulation replicates. As illu-
strated in Figure 4, there are 4 representative patterns of
the comparisons for the 129 true windows on chr3. In par-
ticular, 93 windows have longitudinal extended T2 tests
more powerful than generalized T2 tests (illustrated in Fig-
ure 4, left panel), 5 windows have similar results for both
(Figure 4, middle panel), 15 windows have generalized T2

tests more powerful (Figure 4, right panel), and the
remaining 16 windows have almost no power for any tests.
So, the longitudinal extended T2 tests are significantly
superior to the single-time-point generalized T2 tests (93
vs. 15, p value = 3.8e-15 based on binomial model). For all
windows, the type I error rates of all methods were well
controlled (results are available upon request).

Figure 2 Q-Q plot for asymptotic p values of Zhu and Xiong’s
generalized T2 tests. Results are based on the 18,951 false 10 kbp-long
windows on chr3.

Figure 3 Type I error rate and power of detecting true windows on chr3. The power is the percentage of all 129 true windows that are
detected at various p value cutoffs. The type I error rate is the same percentage of these windows, except the genotypes were permuted to
destroy the genetic associations.
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Discussion
In the simulation data of GAW18, true SNVs are always
allocated on genes. Using genes as windows to group
SNVs may concentrate the true SNVs and has the
potential to improve the detection power. However, the
idea of WGS, instead of exome sequencing, is that the
disease-related genetic factors might allocate outside of
genes. So we did not use the knowledge that true SNVs
are in genes; instead, we evaluated the methods based
on fixed-genome segment windows.
There are several limitations and future research topics

based on the current work. First, matrix estimation is a
key issue in this methodology development. Good estima-
tion of matrices and their inverses can better incorporate
correlation structures’ potential to improve the perfor-
mance. Here we simply adopted the same variance matrix
estimate in Hotelling’s T2 test. This is a maximal likeli-
hood estimate if observations are independent. Unfortu-
nately, independency is not true for family data in the first
place. Besides the correlation issue, for a high-dimensional
matrix with a potentially sparse structure, there are better
estimates of the covariance matrix and its inverse [14].
Second, the permutation test is relatively slow, especially
for handling large amounts of data in WGS. It would be
desirable to derive more accurate asymptotic distributions
for fast and precise p value calculation. Third, necessary
modifications of these tests are needed to handle missing
data and unequal numbers of repeated measures, which
are common problems.

Conclusions
We have extended Zhu and Xiong’s [8] generalized T2

tests to incorporate the covariates with longitudinal
repeated measures. These methods account for 3 sources
of correlation structures among genetic variants, family

members, and time series observations. Compared with
the T2 test methods for snapshot observations, the new
methods have higher power to detect hypertension-
related genome segments according to the GAW18 simu-
lation data.
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