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Abstract

Under the premise that multiple causal variants exist within a disease gene and that we are underpowered to detect
these variants individually, a variety of methods have been developed that attempt to cluster rare variants within a
gene so that the variants may gather strength from one another. These methods group variants by gene or
proximity, and test one gene or marker window at a time. We propose analyzing all genes simultaneously with a
penalized regression method that enables grouping of all (rare and common) variants within a gene while
subgrouping rare variants, thus borrowing strength from both rare and common variants within the same gene. We
apply this approach using a burden based weighting of the rare variants to the Genetic Analysis Workshop 18 data.

Background
Genome-wide association studies have identified many
common variants associated with complex diseases, yet
these variants explain only a small proportion of the her-
itability. Previous studies demonstrate that multiple rare
variants (RVs) within the same gene can contribute to
monogenic disorders. Availability of imputation and
sequence data has sparked interest in methods for the
analysis of RVs that group or collapse variants within a
region, gene, or gene pathway. Burden tests collapse RVs
into a single variable (such as an indicator or count) for
analysis, and require the use of a minor allele frequency
(MAF) threshold to define a RV. Burden-based methods
such as CAST [1], GRANVIL [2], and the variable thresh-
old method [3], ignore the effects from the common var-
iants (CVs), which may contain additional information.
The combined multivariate and collapsing [4] method
allows RVs to be simultaneously analyzed with CVs in a
multivariate test. Weighting methods [5] avoid the issue
of defining and separating common and rare variants by
placing a predefined weight on each variant; for example,
one that is inversely related to the MAF.
Burden tests have high power when all causal variants

have effects in the same direction, but can lose power

when there are protective effects in addition to risk
effects. Thus, methods, such as C-alpha [6], were intro-
duced, which compare the expected variances of the dis-
tribution of the allele frequencies to the actual variance.
Sequence kernel association test (SKAT) [7] is a general-
ized version of C-alpha that allows for variant weights;
its successor, SKAT-O [8], optimally combines SKAT
with a burden test. All these methods operate on a sin-
gle gene, ignoring information contained in other genes
or outside gene boundaries. Because multiple genes can
contribute to disease, we propose to analyze all genes
simultaneously in a penalized regression framework.
Penalized regression methods can perform model selec-
tion by shrinking the size of the coefficients, driving the
coefficients of markers with little or no apparent effect
down toward zero. To find the subset of genes most
associated with disease, we propose penalized regression
of rare and common variants (PeRC), a method that
groups single-nucleotide polymorphisms (SNPs) by
genes, and collapses the RVs within a gene into a single
variable.

Methods
Quantitative traits can be analyzed by minimizing the
sum of square residuals (RSS). Given a phenotype vector
Y of m observations, and a matrix of p SNP genotypes X,* Correspondence: kayers@ucla.edu
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we estimate our vector of regression coefficients, β, by
minimizing:

RSS (β—X,Y) =
m∑
i=1

(yi − ηi(β ,X))2

where β is our vector of regression coefficients and ηi,

the estimated trait value, is computed as ηi =
∑p

j=1
xijβj.

To perform model selection in a high-dimensional pro-
blem, we maximize the negative RSS subject to a penalty
that is dependent on the magnitude of the estimated
parameters. Models that include many variables with
large regression coefficients incur heavier penalties, and
thus optimization tends to occur with sparser models
that include only the variables with the greatest effects
on the RSS. We maximize our objective function, the
penalized RSS:

O (X,Y,β ,λ) = −1
2
RSS (X,Y,β) − f (β ,λ)

where the penalty f is a function of the regression
coefficients and penalty parameters. Many different pen-
alty functions have been proposed, such as the L1 norm
(or lasso), the L2 norm (or ridge), and the combination
of these 2 norms, the elastic net [9]. The elastic net pen-
alty may be written as:

f (λ,β) = λ1||β||1 + λ2||β||22,
where ||β||1 =

∑
j
|βj| and ||β||2 =

∑
j
β2
j are the L1

and L2 norm, respectively, with j indexing variables, and
λ1 and λ2 are fixed parameters controlling the penalty
strengths. λ2 = 0 and λ1 = 0 correspond to the lasso and
the ridge, respectively. The L1 norm imposes heavy
shrinkage, driving the coefficient of many variables to
zero, and generally includes only 1 of a group of highly
correlated variables. Ridge regression results in similar
coefficients for highly correlated variables. The elastic
net lies in the middle, encouraging correlated variables
to enter the model together.
To encourage (a) variables within a group to enter a

model together and (b) sparsity between groups, we can
employ the group lasso or the sparse group lasso [10].
The sparse group lasso additionally enforces sparsity
within groups, and has been previously applied in gen-
ome-wide association studies for variants with MAFs
>1% in the software package Mendel [11]. This penalty
function may be written as:

f (λ,β) =
G∑
g=1

⎡
⎢⎢⎢⎣λ1

⎛
⎝∑

j∈g
β2
j

⎞
⎠
1
2
+ λ2

∑
j∈g

|βj|

⎤
⎥⎥⎥⎦

where g is the group index for each of the G groups, λ1

is a parameter that controls the strength of the group pen-
alty, and λ2 is a parameter that controls the strength of the
sparsity penalty. Zhou et al [11] recommend setting
λ1 = λ2.

In PeRC, we use a combination of the group lasso and
elastic net penalties to group both RVs and CVs within
genes. We first collapse/cluster the RVs within a group
into a single variable to model a common effect. We
can replace ηi with:

ηi (β ,X) = β0 +
∑G

g=1

(∑
c∈gc

xicβc + γg

{
2

∑
r∈gr xir − dmin

dmax − dmin

})
.

γg is the coefficient for the collapsed RVs in group g,
while gr is the set of RVs within group g with MAF <τ,
and gc is the set of common variants with MAF ≥ τ in g.
To rescale the collapsed genotype to the range 0[2], dmax

and dmin correspond to the maximum and minimum num-
ber of RVs in group g that any individual possesses. Addi-
tionally, we can encourage RVs and CVs in the same gene
or window to be in the model together via a group penalty.
Our generalized penalty function can be written as:

f (λ,β) =
∑G

g=1

⎡
⎢⎣λ1sg

(∑
c∈gc

β2
c + γ 2

g

)1
2 + λ2

(∑
c∈gc

ωc |βc| + rg|γg|
)
+ λ3

(∑
c∈gc

ωcβ
2
c + rgγ 2

g

)⎤
⎥⎦.

The first term groups the RVs and CVs within our region
of interest; the second and third terms correspond to the
elastic net and promote sparsity of the individual CVs and
the collapsed RV groups. If λ = (λ1,λ2,λ3), then when
τ = 1,λ = (λ1,λ2, 0) corresponds to a sparse group lasso,
and λ = (0,λ2,λ3) corresponds to the elastic net. We set
the weight sg on each group equal to

√
(lg/max(lg)),where

lg is the number of CVs in group g plus 1 to account for
the collapsed RV variable. This prevents the preferential
selection of large groups solely for their ability to explain a
greater proportion of phenotype variance because of
increased degrees of freedom. We assign individual weights
to each CV, setting ωj = 2

√
(MAFj(1 − MAFj)), as imple-

mented in the software Mendel. This downweights rarer
variants relative to CVs. We also place a weight rg on the
rare group coefficient of

√
(fr

(
1 − fr

)
), where fr is the fre-

quency of the collapsed locus. We have currently set
(λ1,λ2,λ3) = κ(1, 1, 1) where κ controls the amount of
sparsity in the model. The objective function is maximized
using Newton’s method and cyclic coordinate ascent. We
update our coefficients at each iteration with the CLG algo-
rithm [12] : βn+1

j = βn
j − O′(βn)/O′′ (βn) , where n is the

iteration number. If the proposed new value for βn+1
j does

not improve the objective function, we halve the proposed
change in βj and reattempt.

Results
We performed gene-based analysis for the imputed data
on chromosome 3, using the UCSC genome browser to
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Figure 1 Results for simulated DBP. The top 2 plots report the −log10(p values) for the PLINK and the single gene-based methods,
respectively. A horizontal line is drawn at the significance threshold. The points on the last 2 plots represent the predictors for Mendel and
PeRC, respectively. In Mendel, the model size, or number of predictors, is selected by the user, and in PeRC, the magnitude of κ determines
model size. Each model is represented by a different color, and the y-axis corresponds to the number of predictors in the model on the log
scale. Vertical lines are drawn at the causal genes.
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locate genes. For each gene symbol, the minimum tran-
scription start and maximum transcription end positions
were adopted as the base pair position boundaries for
the gene. Overlapping genes were collapsed into a single
group/gene region, which will be referred to as a gene
from now on. Genes with multiple positions or less than
500 base pairs were removed. The result was a list of
1026 genes, of which 1024 were present in the imputed
data. Of the 1,215,399 SNPs on chromosome 3, 590,721
were within a gene, and 315,970 of the remaining SNPs
had a MAF >0.01.
We analyzed chromosome 3 with a variety of methods.

PeRC and Mendel were run on a data set comprised of
all SNPs within genes plus the common SNPs (MAF
>0.01) outside the boundaries of any gene. In PeRC, we
used τ = 0.005 as the cutoff threshold for the RVs. Single
marker analysis was performed in PLINK [13] on all
SNPs, using an additive model. Additionally, single-gene
tests were performed in the R package SKAT [7], and in
the software package GRANVIL with the default RV
threshold of 0.05 [2]. In SKAT, we performed 3 different
analyses from the Beta(MAF,a1,a2) distribution: (a) a1 = 1
and a2 = 25, the SKAT default (SKAT), (b) a1 = 1 and a2
= 1, equivalent to C-alpha (CALPHA), and (c) a1 = 0.5
and a2 = 0.5, equivalent to the weights used in Madsen
and Browning (MB) [5]. Analysis was also performed in
SKAT-O with the SKAT default values. The sparse group
lasso was implemented in Mendel with equal group and
sparsity penalties, and variant weights based on MAF.
Family information was ignored for each method, and
test statistic inflation as a result of familial relationships
or poor quality control was corrected via genomic
control.

Diastolic blood pressure
We analyzed both real diastolic blood pressure (DBP) and
the simulated DBP for replicate 1. For both the real and
simulated data, DBP was first regressed on age, age × age,
sex, smoking status, and use of medication, considering
each time point for each individual as a separate data
entry. The mean residual over all time points for each
individual became the quantitative trait variable to be used
in each method. The residuals for both the real and simu-
lated trait appeared normally distributed.

Real data
After analysis, we looked for statistically significant (after
genomic control correction for inflation and Bonferroni
correction for multiple testing) SNPs or genes from those
methods that provided a test statistic. For the gene-based
methods, the Bonferroni corrected p value threshold was
4.9 × 10−5. For the PLINK analysis, we used a significance
threshold of 10−7. None of the methods gave any significant
results, so we examined the top 5 hits for the gene-based

methods and PLINK, or the models that gave us closest to
5 independent signals for PeRC and Mendel. Little concor-
dance existed between the non-closely related methods,
except for 2 genes: ZNF35 was one of the top hits for
SKAT/SKAT-O and GRANVIL, as was RBMS3 for SKAT/
SKAT-O and Mendel.

Simulated data
Figure 1 plots the results. There is a strong significant
signal around MAP4 for the single-marker method. No
genes were significant for any of the gene based meth-
ods, but MAP4 is a top hit for both MB and CALPHA.
PeRC and Mendel both selected SNPs in the vicinity of
MAP4 as one of their top hits. PeRC identifies the
neighboring gene DHX30 on the left and a SNP not
contained in a known gene on the right. Mendel
selected the gene group AK094639:CSPG5, approxi-
mately 100 kilobases away.

Conclusions
There was little power to detect effects in this data set,
suggesting that most of our top findings were most
likely false positives. We did observe inflation in the sta-
tistics (which we corrected using genomic control), sug-
gesting that either (a) family structure needs to be taken
into account, (b) the imputed data needs some heavy
quality control, or (c) both. The Q-Q plots for the
methods in the SKAT software were skewed, which may
have left our corrected p values slightly conservative.
Ideally, the imputed SNPs should have been cleaned
using the imputation info score. However, several meth-
ods were still able to detect a signal near the causal
gene MAP4 in the simulated data.
To control for family structure with imputed data, a

possible strategy is to use the software package ProA-
BEL [14] to construct the inverse variance-covariance
matrix on the basis of the relationship matrix, which is
made up of the kinship coefficients for family members.
This package is not designed for RVs, but one could
possibly collapse the counts of the RVs in a gene into a
multiallelic marker to perform a burden-type test. Alter-
natively, we may be able to use family information in
the PeRC framework by maximizing the log likelihood,

−1
2

[
ln |V| + (Y − βX)TV−1(Y − BX)

]
, instead of the

−RSS, where V is the variance-covariance matrix and |V|
is its determinant.
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