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Abstract

Advances in next-generation sequencing technology have made it possible to comprehensively interrogate the
entire spectrum of genomic variations including rare variants. They may help capture the remaining genetic
heritability which has not been fully explained by previous genome-wide association studies. Here we performed a
gene-based genome-wide scan to identify hypertension susceptibility loci in analysis of a whole genome
sequencing cohort of 103 unrelated individuals. We found that collapsing singletons may boost signals for
associating rare variants and identified SETX statistically significant by a genome-wide gene-based threshold

(p value <5.0 x 107°). The function of SETX in hypertension may be worthy of further investigation.

Background

Assuming the “common disease-common variant” hypoth-
esis, genome-wide association studies (GWAS) have suc-
cessfully identified hundreds of common variants that
contribute to human traits and diseases [1]. These com-
mon variants, however, account for only a small fraction
of disease or trait heritability. On the other hand, rare var-
iants, having minor allele frequencies (MAFs) between
0.1% and 1%, may be functionally relevant and causal for a
larger proportion of inheritable variability [2,3].

Recent advances in next-generation sequencing (NGS)
technology have made it technically and economically
feasible to capture the full spectrum of genomic varia-
tion. NGS provides a powerful tool for systematic
exploration of common and rare variants in the entire
genome, even in large population-scale studies [4]. How-
ever, pinpointing causal variants remains a major chal-
lenge, particularly for associating rare variants with
complex traits [5]. There is a substantial need for com-
putational methods that allow for efficient association
analysis of rare variants. Several powerful approaches
tailored for rare-variant association studies have been
proposed [6-9]. These tests offer us a powerful tool to
investigate rare variants in the entire genome.
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Methods

Data set

The Genetic Analysis Workshop 18 (GAW18) provided
a whole genome sequencing data set for a hypertension
cohort of 483 individuals. These samples were
sequenced by Complete Genomics with approximately
60x coverage, and odd-numbered autosomes data were
made available for analysis. After quality control, 464
individuals and 24 million single-nucleotide polymorph-
isms (SNPs) remained. Of those SNPs, more than 51%
had MAFs <1%, which was the focus of our analysis in
this article. The longitudinal hypertension phenotypes
were provided for up to 4 time points. Because our ana-
lysis was focused on binary traits, we treated individuals
diagnosed with hypertension in any of the 4 times as
cases. We extracted 103 genetically unrelated individuals
with both phenotype data and sequencing data. We
found 39 unaffected controls and 64 cases affected by
hypertension.

Preprocessing

The variants were stored in VCF files. We preprocessed
them as follows. To end up with rare variants, we filtered
out SNPs that were present in dbSNP132 or MAFs >1%.
We also filtered out SNPs with a genotype missing rate
>5%. The remaining missing genotypes were resampled
from nonmissing individuals.
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X < Lif anyx;j =1
Y71 0 otherwise

Next, we grouped variants into sets based on RefSeq
gene annotations [10], requiring SNPs lie between the
RefSeq transcript start site and transcript end site. SNPs
outside gene boundaries were not analyzed. In total,
10,148 genes from odd-numbered chromosomes were
used. Finally, we collapsed singletons within each gene. A
singleton was a variant being observed only once among
all the samples. The rationale of collapsing singletons was
that the distribution of singletons as 1 variable may reflect
the association between genotype and phenotype. Hence,
we created 1 supervariant for each gene by combining all
the singletons within it using the following rules: for each
sample, (a) the genotype was set to be 1, if there was at
least 1 variant observed; (b) otherwise, the genotype was
set to be 0.

Rare-variant association tests

We employed 3 recently published rare association tests,
qMSAT [7], C-alpha [8], and CMC [9]. The qMSAT is a
quality-weighted multivariate score association test that can
utilize genotype quality information. However, genotype
quality score information was not available in the GAW18
raw VCF files. Without utilizing quality information, the
qMSAT test was equivalent to the linear sequence kernel
association test (SKAT) [6], Sum of Squared U statistic test
(SSU) [11], and C-alpha. The C-alpha test compared the
assumed binomial distribution of rare variants in cases ver-
sus controls via a homogeneity test. CMC, a combined
multivariate and collapsing method, collapsed variants in
subgroups according to allele frequencies and combines
these subgroups using Hotelling’s T test. For these 3 tests,
we used permutation to evaluate association significance.
Because permutation was computationally expensive, we
utilized a 2-step strategy in searching and testing candidate
loci. Specifically, we first used 1000 permutations, from
which we can identify candidates with estimated p value
<0.001. Then for these candidates we conducted 10° per-
mutations so as to know if any loci were significant at a
genome-wide gene-based threshold (0.05/10,000 = 5.0 x
107°) using a Bonferroni assumption.

Results

After the preprocessing step, we obtained approxi-
mately 2.2 million rare variants, which were assigned
to 10,148 genes for testing. We then performed the 3
tests, qMSAT, C-alpha, and CMC, using R (http://
www.r-project.org). The qMSAT, C-alpha, and CMC
identified 10, 6, and 7 genes with an estimated p value
<0.001, respectively (Table 1). Only SETX revealed sig-
nificance for all of the 3 methods. Using 10° permuta-
tions, qMSAT, C-alpha, and CMC yielded more
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Table 1 Genes with p <0.001 from at least 1 method
using 10 permutations

Chr Gene # Variants qMSAT C- CcMC
(singletons) alpha

chr1 NUP210L 674(221) Y

chr USP1 51(19) Y Y

chr7 CcuLt 348(114) Y

chr9 RAB14 88(32) Y

chr9 SETX 380(135) Y Y Y
chr11 FLJ39051 44(11) Y

chr11 GDPD5 338(104) Y

chr19 GRIN3B 24(8) Y

chr19 LOC100505495 249(78) Y Y

chr19 PSG5 111(26) Y Y
chrs CXXC5 96(35) Y

chr15 RCCD1 32(13) Y

chr17 WSCD1 183(70) Y

chr17 MLLT6 92(33) Y
chri ATF6 576(173) Y
chr7 ZNF775 69(21) Y
chr19 LOC100128252 45(13) Y
chrs LOC728342 495(146) Y

precise p values of 2.0 x 10, 1.0 x 107, and 6.0 x 107,
respectively, for SETX (Table 2). The CMC p value was
slightly higher than the genome-wide gene-based
threshold, which was possibly a result of its lower power
compared to qMSAT and C-alpha [7].

SETX locates in chr9:135,136,827-135,230,372 and is a
relatively large gene among all the human genes. The
length of SETX (93,545 base pairs [bp]) is far greater
than the median number (17,970 bp) of all the genes (p
value <2.2 x 107'¢, one-sided Wilcoxon signed rank
test). Although it contains 26 exons, the total length of
coding regions is only 8,034, suggesting that SETX
includes large intronic regions. To pinpoint causal
regions, we divided the 380 variants of SETX into 3
groups based on its functional annotations. Specifically,
we applied ANNOVAR [12] to annotate the variants of
SETX and grouped them into coding sequence regions
(CDSs), untranslated regions (UTRs), and intronic
regions (INTRONSs) (see Table 2). We observed that a
majority of rare variants were, indeed, from the intronic
region. We tested these 3 regions using the same tests
with 10° permutations. We found that the UTR group
and the CDS group were far from being significant, sug-
gesting that they may be irrelevant. Another possible
reason may be that there are very few variants in these
categories. Because the INTRON group became more
significant than the whole gene-based tests after exclud-
ing the variants from these 2 groups, we may conclude
that causal variants locate in the intronic region of
SETX.
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Table 2 Functional annotation and test of the rare variants in SETX
p Value | OR | 95% CI p Value*
Regions # Variants (singletons) Fisher's exact test on supervariant qMSAT C-alpha CcMC
SETX (CDS + UTR + INTRON) 380(135) 37x10° 88 [3.12, 27.43] 20x10°  10x10°  60x10°
CDS 14(8) 1.000 1.0 [0.18, 6.94] 1.000 0.544 0.837
UTR 6(4) 0.632 06 [0.04, 8.60] 1.000 0.662 0.990
INTRON 360(123) 88 x 1077 95 [343,2870] <10x10° <10x10° <10x10°

*p Values were calculated using 10° permutations.
TSupervariant was defined by collapsing all the singletons.

We then sought to elucidate why and where the signal
came from. To this end, several in-depth analyses for
SETX were performed. First, the Fisher’s Exact test was
conducted on the super feature we created by collapsing
singletons. We found that, by collapsing all the 135 sin-
gletons on SETX, it achieved a very significant p value
(3.7 x 1079), together with OR = 8.8 and 95% CI = [3.12,
27.43] (see Table 2). This explained why SETX could be
detectable under such a small sample size. We obtained
more significance when testing the super feature with
only singletons within the intronic regions (p value =
8.8 x 1077, OR = 9.5, and 95% CI = [3.43, 28.70]), which
was consistent with the results from 3 rare variant asso-
ciation tests. Second, we checked each rare variant and
singleton individually by performing the same test. It
turned out that none of them were significant, when the
minimum p value was merely 0.14. This demonstrated
that the significance of SETX was very unlikely a result of
technical artifact, such as systematic sequencing error or
imputation bias, because the new feature was a combina-
tion of hundreds of singletons. It also highlighted that
collapsing singletons may increase power when studying
association of rare variants using a relatively small sample
size. Third, we took a closer examination of allele fre-
quencies of the 380 rare variants located in SETX. Of the
rare variants, 92 could be found in the 1000 Genomes
Project (2012 February release, http://www.1000genomes.
org/). We found their allele frequencies in general popu-
lation were extremely low (mean frequency = 0.0004 for
92 rare variants), indicating that these variants were so
rare that they may collectively have a composite effect of
OR = 8.8 while missed in previous studies.

Finally, to further remove possible confounding effect of
population stratification, we performed a principal compo-
nent analysis on 100,000 randomly selected common var-
iants with no missing value and MAF >0.1. Logistic
regression test was then conducted on the created super
feature for SETX, together with the first 10 principal com-
ponents as covariates. We found that the super feature
remained significant, with a p value = 6.7 x 107>, while the
10 principal components were not.

The protein encoded by SETX contains a DNA-RNA
helicase domain at its C-terminal, suggesting its

involvement in both DNA and RNA processing. Muta-
tions in SETX have been reported to be associated with
ataxia-ocular apraxia-2 (AOA2) [13] and an autosomal
dominant form of juvenile amyotrophic lateral sclerosis
(ALS4) [10,14]. However, the function of SETX and its
role in hypertension remains unclear and may be worthy
of further investigation.

Discussion

We performed 3 rare-variant association tests for the
analysis of a whole genome sequencing data set to iden-
tify susceptibility genes in hypertension. We grouped
and collapsed rare variants in a gene-based manner for
2 reasons: (a) the deleteriousness of variants could come
from protein-coding sequence changes or noncoding
intronic regions that contain regulatory elements. (b)
Based on the previous simulation study [7], the power
of the analysis could be as low as 0.2 (sample size
<200). By collapsing singletons, one may benefit from
increasing power. This idea was essentially similar as
those burden tests for rare copy number variation in
GWAS and de novo mutations in sequencing study.
Indeed, we found that the signal was mainly from the
intronic regions of SETX in a collective manner of those
singletons.

The analysis can be extended and improved in several
ways. First, it was shown in qMSAT [7] that incorpora-
tion of genotype call qualities directly in association
tests can increase power. If raw reads are available, we
may call variants and obtain genotype quality informa-
tion at the same time, using variant calling toolkits
[15,16] to further increase our analysis power. Second,
we only analyzed rare variants. The association test
could be also performed by combining both rare and
common variants. Third, we only included 103 unre-
lated individuals. We may consider adding more sam-
ples to increase power. Finally, we focused on only genic
regions using conventional gene annotation, which make
up little more than 1% of the genome. The recent anno-
tation made by the ENCODE consortium has included
more than 70,000 “promoter” regions and nearly
400,000 “enhancer” regions that regulate expression of
distant genes, which account for roughly 80% of the
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genome [17]. We may utilize this new knowledge in
future analysis.
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