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Abstract

It has been hypothesized that rare variants may hold the key to unraveling the genetic transmission mechanism of
many common complex traits. Currently, there is a dearth of statistical methods that are powerful enough to
detect association with rare haplotypes. One of the recently proposed methods is logistic Bayesian LASSO for case-
control data. By penalizing the regression coefficients through appropriate priors, logistic Bayesian LASSO weeds
out the unassociated haplotypes, making it possible for the associated rare haplotypes to be detected with higher
powers. We used the Genetic Analysis Workshop 18 simulated data to evaluate the behavior of logistic Bayesian
LASSO in terms of its power and type I error under a complex disease model. We obtained knowledge of the
simulation model, including the locations of the functional variants, and we chose to focus on two genomic
regions in the MAP4 gene on chromosome 3. The sample size was 142 individuals and there were 200 replicates.
Despite the small sample size, logistic Bayesian LASSO showed high power to detect two haplotypes containing
functional variants in these regions while maintaining low type I errors. At the same time, a commonly used
approach for haplotype association implemented in the software hapassoc failed to converge because of the
presence of rare haplotypes. Thus, we conclude that logistic Bayesian LASSO can play an important role in the
search for rare haplotypes.

Background
It is now widely acknowledged that rare variants play a cri-
tical role in complex diseases. Although many approaches
have been proposed for detecting association with rare sin-
gle-nucleotide variants (eg, Refs. [1-6] to name just a few),
there are relatively fewer approaches for rare haplotype
variants [7-10]. Once a particular genomic region is impli-
cated to be potentially harboring a functional variant from
single nucleotide polymorphism (SNP) analysis, typically it
is followed up by haplotype analysis to zoom further into
the region. In such analysis, rare haplotypes frequently
surface because rare haplotypes can result from even com-
binations of common single variants.
The presence of rare haplotypes poses a challenge for

commonly used haplotype association approaches such

as those based on generalized linear models using the
expectation-maximization (EM) algorithm (implemented
in the software hapassoc [11] among others). With rare
haplotypes, EM estimates can be unstable and the algo-
rithm may fail to converge. To circumvent this problem,
rare haplotypes are usually pooled together. However,
pooling can result in washing out of association signal if
haplotypes of risk and protective types are pooled
together [10]. Thus, in recent years, newer approaches
for detecting rare haplotypes have been proposed. One of
them is logistic Bayesian LASSO (LBL) [10], a Bayesian
version of penalized regression. LBL applies penalty to
regression coefficients through appropriate choice of
their prior distributions. This helps reduce signal noise
by weeding out unassociated (especially common) haplo-
types, thereby enabling signals contained in the asso-
ciated rare haplotypes to be more easily detected. For
example, the application of LBL to age-related macular
degeneration data led to identification of a specific rare
haplotype for the first time in the literature [10].
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Our goal is to further evaluate the performance of LBL
for data generated under complicated and realistic
scenarios. Data from Genetic Analysis Workshop 18
(GAW18) provide such an opportunity, and with this
aim, we apply LBL to 200 replicates of the simulated
GAW18 data. In particular, we mimic a candidate variant
search approach. That is, we assume that prior studies,
most likely single-SNP studies, have pointed to a geno-
mic region that potentially harbors variants involved in
the genetic mechanism of a trait. Following up on that,
we zoom into the region with sequence data provided in
GAW18. So that we could evaluate power and type I
error, we obtained access to the simulating model
("Answers”). We focused on two genomic regions in the
MAP4 gene on chromosome 3 that harbored several
functional variants and analyzed them using LBL and
hapassoc.

Methods
Here we briefly describe LBL; more details can be found
in Biswas and Lin [10]. Suppose we have a case-control
sample consisting of n1 cases and n2 controls with n1 +
n2 = n. Let Yi = 1/0 denote the case-control status of
the ith individual, i = 1. . .n, and Y = (Y1,...,Yn). Suppose
L SNPs are considered to form a haplotype block. We
further let Zi denote the missing (phased) haplotype pair
of ith individual and Z = (Z1. . . Zn). Note that Zis are
unobservable because phase information is usually not
deductible from the genotype data. LBL is based on ret-
rospective model for case-control data, which has been
well studied in general statistics (including Bayesian), as
well as in haplotype-association literature (see Refs.
[12-16] and the references therein). The complete data
likelihood is written as:

Lc (�) =
∏n1

i=1
P(Zi—Yi = 1,�)

∏n

i=n1+1
P(Zi—Yi = 0,�)(1)

where Ψ=(b,g) denotes the collection of regression
coefficients and parameters associated with haplotype
frequencies, which will be specified more explicitly as
our formulation unfolds. Let aZ=P(Z|Y = 0) and bZ=P(Z|
Y = 1) denote the frequencies of a haplotype pair Z in
the control and the case population, respectively. We
first note that we can express bZ in terms of aZ and the
odds of disease for a given Z, θZ:

bZ =
P (Y = 1—Z) P (Z)∑
H P (Y = 1—H) P (H)

=
θZP (Z) P (Y = 0—Z)∑
H θHP (H) P (Y = 0—H)

=
θZaZ∑
H θHaH

where θZ=P(Y=1|Z)/P(Y=0|Z), and H is the set of all
possible haplotype pairs. Therefore, the likelihood in
equation (1) can be expressed in terms of the aZ s and
the θZs. Let us next consider aZ and θZ, and specify
their models.

Modeling of aZ
Suppose there are a total of m haplotypes (ie, haplotype
diversity is m) and let f = (f1,...,fm ) denote their frequen-

cies with the constraint that fk>0 and
∑m

k=1
fk=1. Then,

for a haplotype pair Z= zk/zk ′ , we can model aZ as
follows:

aZ (γ ) = P(Z = zk/zk′|Y = 0, γ ) = δkk′dfk + (2 − δkk′)(1 − d)fkfk′ (2)

where δkk ′ = 1(0) if zk =zk′ (zk ≠ zk′), g ={f ,d} and
d∈(−1,1) is the within-population inbreeding coefficient
that can be used to capture excess and/or reduction of
homozygosity. By modeling the frequency in this way,
we do not need to make the assumption of Hardy-
Weinberg equilibrium.

Modeling of θZ
We use logistic regression for modeling log odds. Speci-
fically, log θZ =a + XZb, where XZ is a (row) design vec-
tor, a is the intercept, and b is a vector of coefficients
representing the haplotype effects.

Priors
To cast the problem in the Bayesian setting, we need to
assign priors to the parameters Ψ = (b, g = {f, d}). The
prior for b plays the important role of regularization of
regression coefficients. In particular, a double-exponen-
tial distribution with mean 0 and appropriately chosen
variance to control the degree of penalty has been
shown to give the Bayesian version of LASSO when nor-
mal likelihood is used. Specifically, we set the prior for
bj to be

π(βj|λ) = λ

2
exp

(−λ
∣∣βj

∣∣) ,−∞ < βj < ∞, j = 1, . . . ,m − 1. (3)

Here l controls the degree of penalty as the variance of
this distribution is 2/l2. We let the hyper-parameter l fol-
low a gamma distribution. For f and d, note that they are
not independent, as aZ(g) in equation (2) must be nonne-
gative. This imposes the constraint that d >{−fk/(1 − fk)}
for all k, and because d <1, we have max k{−fk/(1 − fk)}<d
<1. We use uniform priors for both f and d in their
restricted ranges. For f, we use Dirichlet(1, 1, ..., 1) consist-
ing of a total of m 1s for the m haplotypes; for d given f,
we use the uniform(max k{−fk/(1 − fk)}, 1) distribution.

Inference
Markov chain Monte Carlo (MCMC) methods are used
to estimate posterior distributions of parameters. At
each iteration, we update the missing haplotypes Z and
the parameters b, l, f, and d. The Markov chain is run
for a total of 50,000 iterations with 20,000 burn-in. We
draw an inference regarding association by testing for
significance of each b coefficient. We carry out a
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hypothesis test of H0 : |b| ≤ ∈ versus Ha: |b| >∈, where
∈ is set to a small number, using Bayes factor (BF),
which is defined as the ratio of posterior odds to prior
odds of Ha. If the BF exceeds a certain threshold, we
conclude that the corresponding b is significant;that is,
that haplotype is associated. In our applications, we use
a threshold of 2 and ∈= 0.1 following Biswas and Lin
[10]. This method has been implemented as an R pack-
age (with dynamic loading of C program) LBL, which is
available at http://www.utdallas.edu/~swati.biswas.
LBL requires as an input a list of possible haplotypes

that are compatible with each person’s genotype. We
obtain this from the hapassoc package’s pre-processing
command “pre.hapassoc”. Note that LBL does not assign
any specific haplotype to persons whose haplotypes cannot
be inferred unambiguously; rather, their haplotypes are
treated as missing and updated at every MCMC iteration.
Thus, the uncertainty in haplotypes for each person is
incorporated into the model. By the same token, the
uncertainty in haplotype frequencies fk is taken into
account by treating them as unknown parameters with
noninformative prior distribution and updating them at
each iteration (note that although pre.hapassoc outputs
frequency estimates also, those are not needed by LBL).
So, even if in the data some haplotypes are only compati-
ble with the cases but not with any control, by having a
prior distribution on fks, the model allows the possibility
of the control population having those haplotypes as well.
However, if those haplotypes have sufficient contribution
to the disease under study and the sample size is reason-
able, we will expect those haplotypes to be inferred as
associated.

Results
As mentioned in the background section, we propose to
use haplotype analysis as a follow-up analysis to zoom
into a genomic region that has been implicated in earlier
studies. With this premise, we focus on gene MAP4 on
chromosome 3. In particular, we consider 2 separate
regions around 2 functional variants: (a) the most fre-
quent functional variant located at 47,956,424 basepairs
(bp) with minor allele frequency (MAF) =0.378, and (b)
variant with strongest effect size at 48,040,283 bp with
MAF = 0.032. The rationale for such a choice is that a
functional variant that is either fairly common or is rare
but has a strong effect could be reasonably expected to
have been implicated in prior (single-SNP genome scan)
studies. To zoom into these regions, we selected SNPs
that are within 4000 bp of these locations and have
MAF>0.01, and formed haplotypes with those SNPs in
each region. This choice of MAF ensured that in a sam-
ple of size 142, at least two copies of each SNP were pre-
sent and thereby excluded almost monomorphic SNPs.
Common SNPs can combine to form rare haplotypes

(frequency <0.05), and, indeed, this was the case for these
regions. In both regions, we had 9 SNPs each. Specifi-
cally, for region 1, 9 SNPs resulted in 9 haplotypes. This
is unusually low and it could be just random chance or
there may be a biological reason for this. However, as we
analyze the simulated phenotypes, which were generated
based on single SNPs, we do not expect this to have any
significant effect on our analysis.
As LBL has been proposed for the case-control data,

we used the sample of unrelated people. We classified a
person as affected (case) if the individual was diagnosed
with high blood pressure or was taking medication for
high blood pressure at the last exam. The total sample
size was 142 individuals. The number of cases varied
from replicate to replicate with mean = 72 and SD = 5,
while the genotypes were identical for all replicates. We
analyzed all 200 replicates for the two regions described
above twice. First, we analyzed with the provided pheno-
types to examine power. Second, for each replicate, we
randomly permuted the affection status of individuals
and reanalyzed the data. This nullified any association
present between phenotype and genotypes, and thereby
allowed us to gauge the type I error. Note that the total
numbers of cases and controls remain the same in both
the original and its corresponding “null” versions.
We analyzed each replicate using hapassoc and LBL.

Hapassoc did not converge, presumably because of the
presence of rare haplotypes in both regions studied. Tables
1 and 2 show SNPs and haplotypes in these two genomic
regions and the proportions of replicates showing associa-
tion with each haplotype (BF>2) in both original and null
versions. In Table 1 LBL’s power to detect the haplotype
with two functional variants (the third functional variant
has almost a negligible effect) is exceptionally high for a
sample size of only 142 individuals. However, there is no
power at all to identify the haplotypes with 1 functional
variant at 47,956,424 bp. This indicates that the other
(rare) functional variant at 47,957,996 bp almost solely
drives the power for detecting the haplotype with two var-
iants. The type I errors in the null version are all very low
(≤2%). Thus, this illustrates the power of LBL for identify-
ing rare haplotypes. In region 2, the powers are 78% and
30% for the two haplotypes; both are rare haplotypes and
each contains one variant. The variant in the former hap-
lotype accounts for higher percentage of the variability in
the diastolic blood pressure (0.02 vs. 0.01) and systolic
blood pressure (0.03 vs. 0.01). Although the two variants
are almost on top of each other (1 bp apart), there was no
haplotype containing both variants. The type I errors are,
again, very small (≤2%).

Discussion
Here we evaluated the power and type I error of LBL for
detecting rare haplotypes. Remarkably, even with a
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sample size of 142 individuals, LBL seems to be able to
achieve very high power and at the same time hold the
type I error at very low levels. Even though this high
power may be partially explained by the relatively large
contribution of the variants to the trait variance (in the
range of 0.01% to 0.03%), these results further strengthen
the earlier findings on the usefulness of LBL [10].
LBL is relatively computationally efficient. To run one

replicate for region 1 (with nine haplotypes), LBL took
approximately eight seconds on a 2.8GHz Xeon proces-
sor under a Linux operating system with 23.5 GB of
RAM. The computational intensity depends on the num-
ber of haplotypes rather than the number of SNPs. In our
experience, LBL can easily handle 15 to 20 haplotypes.
Also, haplotype frequencies of 0.005 were handled well

by LBL in Ref. [10]. We also expect LBL to handle rarer
haplotypes with larger sample sizes.
The nature of the simulating model and the resulting

data, although complex, lead to some limitations of the
study. First, the simulation model was based on individual
SNPs and not haplotypes, whereas from a biological point
of view, the role of haplotypes is more than just a combi-
nation of SNPs [17]. Our limited exploration of the data
(including other regions not presented here) indicated that
there may be only few haplotypes that consisted of more
than one functional variant. Our first region may be one
of the few examples of that type. Even for that haplotype,
as we saw earlier, the power to detect association with it
seemed to be solely driven by one of the variants. Further-
more, in our second region, from a biological standpoint,

Table 2 Results for the region surrounding SNP at 48,040,283 bp using phenotypes as provided (Original) and after
randomly redistributing them to individuals (Null).

SNP(bp) MAF Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9 Hap10 Hap11 Hap12

48,036,889 0.011 0 0 0 0 0 0 0 0 0 0 1 1

48,037,078 0.363 0 0 0 0 1 1 1 1 1 1 0 0

48,038,714 0.373 0 0 0 0 1 1 1 1 1 1 1 1

48,039,908 0.246 0 1 1 1 0 0 0 0 0 0 0 0

48,040,283 0.025 0 0 0 0 0 0 0 0 0 1 0 0

48,040,284 0.021 0 0 0 1 0 0 0 0 0 0 0 0

48,041,471 0.025 0 0 0 0 0 0 1 1 1 0 0 1

48,042,192 0.018 0 0 0 0 0 0 0 1 1 0 0 1

48,043,058 0.331 0 0 1 0 0 1 0 0 1 1 0 0

Hap Freq 0.380 0.222 0.004 0.021 0.018 0.299 0.007 0.010 0.004 0.025 0.007 0.003

Original NA 0.02 0.00 0.30 0.02 0.00 0.00 0.00 0.00 0.78 0.00 0.00

Null NA 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00

The two rows, Original and Null, show the proportion of replicates with BF >2. There are 12 possible haplotypes (Hap) with minor allele of each SNP denoted by
1. The minor alleles in red and boldface are functional variants. The most frequent haplotype (Hap1) is the baseline. Freq represents haplotype frequency.

Table 1 Results for the region surrounding SNP at 47,956,424 bp using phenotypes as provided (Original) and after
randomly redistributing them to individuals (Null).

SNP(bp) MAF Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9

47,952,843 0.018 0 0 0 0 0 0 0 1 1

47,953,405 0.370 0 1 1 1 1 1 1 1 1

47,953,733 0.320 0 0 0 0 1 1 1 0 0

47,956,424 0.359 0 0 1 1 1 1 1 1 1

47,956,506 0.317 0 0 0 0 0 1 1 0 0

47,957,996 0.021 0 0 0 0 0 0 1 0 0

47,958,037 0.317 0 0 0 0 0 1* 1* 0 0

47,959,770 0.367 0 1 1 1 1 1 1 0 1

47,959,977 0.011 0 0 0 1 0 0 0 0 0

Hap Freq 0.63 0.011 0.011 0.011 0.003 0.296 0.021 0.007 0.011

Original NA 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00

Null NA 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

The two rows, Original and Null, show the proportion of replicates with BF >2. There are 9 possible haplotypes (Hap) with minor allele of each SNP denoted by
1. The minor alleles in bold typeface are functional variants. The most frequent haplotype (Hap1) is the baseline. Freq represents haplotype frequency.
*The % variability explained by this variant is almost negligible (<0.0001).
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it would seem highly unlikely that two independent muta-
tions would have arisen so close to each other (there was
no haplotype with both mutations) [17].
A second limitation is the sample size of only 142.

With such a small sample, detecting association with a
rare variant is highly unlikely. Thus, we chose variants
with relatively stronger effects. Nevertheless, it is note-
worthy that LBL showed reasonable powers when hapas-
soc failed to converge. It will be of interest to compare
the results with some newer methods for rare haplotype
association.
Yet another shortcoming of the current study is that

the simulated genotypes in all replicates were the same
and only phenotypes varied across replicates. For this
reason, we did not combine replicates to increase the
sample size and explore power for detecting haplotypes
with more modest effects. Nonetheless, it has been
shown that LBL has good power for detecting such type
of effects with larger sample sizes [10]. All together, the
results establish LBL as a powerful tool for identifying
association with rare haplotypes. Moreover, the flexible
framework of LBL allows many useful extensions. For
example, covariates and their interactions with haplo-
types can be incorporated by modeling log θZ = a +
XZb + XEτ + XZ XEg with XE denoting the design vector
based on covariates, τ the corresponding coefficients,
and g the coefficients corresponding to interactions.
This extension has been recently proposed in Ref [18].
For this, the likelihood in equation (1) is extended to
model the joint distribution of haplotypes and covari-
ates. Another future work is to adapt LBL for other data
types.

Conclusions
LBL is a powerful approach for detecting rare haplotype
association.
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