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Abstract

We applied a gene-based haplotype approach for the genome-wide association analysis on hypertension using
Genetic Analysis Workshop 18 data for unrelated individuals. Association of single-nucleotide polymorphisms and
clinical outcome were first assessed and haplotypes were then constructed based on the gene information and
the linkage disequilibrium plot. Extensive haplotype analysis was also conducted for the whole chromosome 3. We
found 1 block from the ULK4 gene and 2 blocks from the LOC64690 gene that were significantly associated with
hypertension.

Background
Hypertension is a major risk factor for many diseases,
including stroke and heart failure. Various genetic studies
have been done and a number of genes have been identi-
fied as having strong associations with hypertension or
high blood pressure [1]. In our study, we proposed a hap-
lotype approach to identify blocks on the gene that have
strong associations with hypertension. Focusing on a block
of the gene instead of looking only at a particular point
may better capture the disease pattern and take the poten-
tial interactions between markers into account [2]. In addi-
tion, because the number of tests is reduced compared
with the single-nucleotide polymorphism (SNP) tests,
there is less penalty from multiple testing [3]. We report
significant haplotypes from association analysis.

Methods
Definition of outcome and predictors
Hypertension was defined as systolic blood pressure
>140 mm Hg and diastolic blood pressure > 90 mm Hg,
or as being on antihypertensive medications at a specific
examination. For this study, we defined our outcome as
“ever-hypertension” if an individual was hypertensive in
any of the 4 examinations, and “never-hypertension” if

hypertension criteria were never met in those 4 examina-
tions. In this way, we created a single hypertension out-
come based on the longitudinal structure of the data. The
genetic analysis was focused on unrelated individuals.
Gender, smoking habits, and age were selected as the

main clinical predictors based on exploratory data analysis.
Similar to the definition of outcome, smoking was defined
as “ever-smokers” and “nonsmokers” based on multiple
examinations. We first treated age as a continuous variable
and detected its significant association with hypertension
(odds ratio [OR] = 1.034; 95% confidence interval [CI]:
1.009, 1.059; p value = 0.0075). Then we examined the
possible nonlinear relation between age and the defined
hypertension outcome based on restricted cubic spline
method [4] and found that the pattern of OR changed
as age changed. Finally, based on the cubic splines plot
(Figure 1), we dichotomized age at 55 years.

Quality control of genotype data
We focused on genome-wide association studies data of
chromosome 3, and conducted quality control of genotype
data using PLINK [5]. Thresholds for data quality control
steps were set as follows: individual genotyping missing
rate at 0.05, minor allele frequency at 0.1, missing rate per
SNP at 0.05, and Hardy-Weinberg equilibrium at 1 × 10−6.
Heterozygosity rate was assessed for potential outliers. We
merged our data set with HapMap [6] data and generated
a multidimensional scaling plot (Figure 2). To adjust for
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population stratification effect, we used EIGENSTRAT
[7,8] to conduct principal components analysis to expli-
citly model ancestry differences between individuals and
obtained a principal component for each subject.

Preliminary analysis and gene-based haplotype
construction
A logistic regression model was applied on association
analysis for SNPs and the defined hypertension outcome
with adjustment for covariates as well as principal com-
ponent vectors obtained from the population stratifica-
tion procedure. We first found some nominally
significant SNPs (p <5 × 10−4) from this preliminary
model, and then located the genes corresponding to
such SNPs based on the annotation information (T. Nal-
pathamkalam et al., unpublished data, 2012). For each

Figure 1 Cubic splines plot for age

Figure 2 Multidimensional scaling plot (outlier in red circle)
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gene, we defined the haplotype block based on a high
linkage disequilibrium (LD) region containing the signif-
icant SNPs we found from the preliminary model. The
blocks were defined by CI algorithm [9] as well as the
4-gamete rule algorithm [10]. Then for each block, we
estimated the haplotype frequencies and the probability
of having each haplotype for all individuals. The estima-
tions of the LD blocks and haplotype frequencies were
applied using HAPLOVIEW [11] and PHASE [12-14].

Haplotype analysis
First, omnibus tests on haplotypes were performed for
each block of interest. Similar to the preliminary asso-
ciation analysis, logistic regression models were used
and then likelihood ratio tests were conducted to see if
haplotypes should be included in the model:

logit
(
P(Yi = 1|−→Xi )

)
= β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i (1)

logit
(
P(Yi = 1|−→Xi )

)
= β0 + β2X2i + β3X3i + β4X4i + β5X5i (2)

where Y represents outcome (Yi = 1 if individual i is
defined as “ever-hypertension”), X1 the design matrix
representing haplotypes in a particular block, X2 age, X3

gender, X4 smoking habit, and X5 principal component.
Difference of log-likelihood between model (2) and
model (1) were calculated and a chi-square test was per-
formed. The entries in the design matrix X1 were the
inferred conditional probabilities of haplotypes given the
genotype [15]. Specifically, for haplotypes hm and hn, the
conditional probability of the pair (hm, hn) for the ith

individual with genotype Gi is:

Pr (hm, hn|Gi) =
Pr (Gi—hm, hn) phmphn∑
u,v Pr (Gi—hu, hv) phuphv

(3)

where phu and phv denote haplotype frequencies esti-
mated from PHASE. If the omnibus test was significant,
which means at least 1 haplotype should be kept in the
model, we then conducted haplotype-specific tests for
each haplotype in the block and identified the specific
haplotype strongly associated with the outcome.

Results
Summary of phenotypes and genotypes
We started with 65,460 SNPs of 142 unrelated indivi-
duals. First, we checked missing rate per individual at
the 0.05 level and dropped 9 individuals. Second, we
excluded SNPs with a minor allele frequency less than
0.1, leaving 46,205 SNPs in the sample. Following that,
we excluded SNPs with missing rate greater than 0.05,
leaving 46,103 SNPs. Finally, we checked the Hardy-
Weinberg equilibrium at 1 × 10−6 level, and all 46,103
SNPs passed the test. Heterozygosity rate was checked

for all individuals and none were located outside ±3 SD
from the mean heterozygosity rate. We then combined
the cleaned data set with HapMap data on common
SNPs and obtained the multidimensional scaling plot
(see Figure 2). One outlier was identified from family 9
(T2DG0901244), who probably belonged to an Asian
population. After quality control, we excluded this indi-
vidual from the samples and ended up with 42,727
SNPs and 132 individuals. For the 132 individuals left in
our sample, 81 were classified as “ever-hypertension”
and 51 as “never-hypertension.” Table 1 summarizes the
distributions of covariates.

Preliminary association analysis and haplotype
construction
The preliminary model had limited power to detect
SNPs that strongly associated with hypertension after
multiple testing was adjusted. We used QUANTO [16]
to conduct power analysis. We needed 433 individuals
to have an 80% power to detect the marginal effect of
OR = 2.0. Table 2 lists the top 8 SNPs from the preli-
minary model. They were from 5 genes that may have
potential associations with hypertension. Haplotypes
were constructed on these genes based on results from
the LD plot generated by HAPLOVIEW, and then sam-
ple haplotype frequencies were estimated.

Table 1 Summary of phenotype data

Characteristics Count (%)

Hypertension Ever 81 (61.4)

Never 51 (38.6)

Gender Male 57 (43.2)

Female 75 (56.8)

Smoking Ever 32 (24.2)

Never 100 (75.8)

Age <55 years 75 (56.8)

≥55 years 57 (43.2)

Table 2 Significant SNPs from preliminary model and
corresponding genes

SNP Gene OR (CI) p Value

rs2700464 ULK4 0.29 (0.15, 0.56) 2 × 10−4

rs2470696 CBLB 0.31 (0.18, 0.55) 7 × 10−5

rs2953768 ALG1L2 0.18 (0.08, 0.39) 2 × 10−5

rs6785346 LOC64690 3.53 (1.87, 6.64) 9 × 10−5

rs9857853 LOC64690 3.19 (1.74, 5.87) 2 × 10−4

rs9848025 LOC64690 3.52 (1.86, 6.66) 1 × 10−4

rs2129379 LOC64690 3.59 (1.77, 7.28) 4 × 10−4

rs16862964 LPP-AS2 4.95 (2.06, 11.89) 3 × 10−4
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Haplotype analysis
One haplotype from a candidate block of gene ULK4 had
significant association with hypertension in the main effect
model. Haplotypes from 2 blocks of gene LOC64690 were
also significant in the main effect model. We took multiple
testing into consideration and determined the significance
threshold as 0.05/number of haplotypes being tested in
the candidate block. Table 3 summarizes the results from
the haplotype analysis. Age was significant in both models,
but gender and smoking habit were not.
Adding the interactive effect of haplotype and age did

not improve the model. Power analysis showed that for
gene ULK4, we needed at least 258 individuals to have an
80% power to detect interaction effect with ratio of OR =
2.0, but only 92 individuals were required for the main
effects model. For gene LOC64690, 514 individuals were
required to gain 80% power for the interaction model
(given ratio of OR = 2.0), but only 100 individuals were
required for the main effects model to achieve the same
level of power.
We also conducted haplotype analysis on whole chro-

mosome 3 in PLINK. In PLINK, haplotype blocks are
estimated following the default procedure in HAPLO-
VIEW and pairwise LD is calculated only for SNPs within
100 kilobases (kb). We tried the models with and without
adjusted covariates. A total of 6389 haplotype blocks
were constructed by using PLINK and no haplotype was
significant in the omnibus test at Bonferroni corrected
significance level of 0.05/6389 ~ 8 × 10−6.

Conclusions
Based on the results, we can see that the haplotype con-
taining SNP rs2700464 on ULK4 is strongly associated
with our defined hypertension outcome. Daniel et al
[17] concluded that ULK4 is associated with high blood
pressure and, potentially, hypertension. We also detected
that 2 haplotype blocks on LOC64690 had a strong rela-
tionship with hypertension. In addition, the interaction
effect between age and haplotype was not significant in
all models, but power analysis indicated that our sample
size was too limited to detect interaction effect, but suf-
ficient for the main effects model.
We focused only on unrelated individuals in our study,

ignoring family structures. We may consider including

the family structure in further research, and may try to
model the complex relationship between family mem-
bers. In addition, we ran the permutation test for haplo-
types in the candidate blocks as well as on the whole
chromosome 3. However, the population structure is not
preserved for a logistic model when doing permutation
tests. Therefore, the permutation p values may not be a
good estimate of the asymptotic p values. We may con-
sider using the biased urn method [18] to overcome this
problem in further research.
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