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Abstract

For almost all complex traits studied in humans, the identified genetic variants discovered to date have accounted
for only a small portion of the estimated trait heritability. Consequently, several methods have been developed to
identify rare single-nucleotide variants associated with complex traits for population-based designs. Because rare
disease variants tend to be enriched in families containing multiple affected individuals, family-based designs can
play an important role in the identification of rare causal variants. In this study, we utilize Genetic Analysis
Workshop 18 simulated data to examine the performance of some existing rare variant identification methods for
unrelated individuals, including our recent method (rPLS). The simulated data is used to investigate whether there
is an advantage to using family data compared to case-control data. The results indicate that population-based
methods suffer from power loss, especially when the sample size is small. The family-based method employed in
this paper results in higher power but fails to control type I error. Our study also highlights the importance of the
phenotype choice, which can affect the power of detecting causal genes substantially.

Background
With rapid advances in genotyping technologies, it has
becoming increasingly feasible to efficiently sequence
large number of individuals, which allows us to assess the
role of rare variants in influencing complex traits. How-
ever, because each rare variant is present in only a small
number of individuals, standard association tests
designed for common variants have low power to identify
rare variants associated with the trait. This fact has led to
the development of new statistical tests specifically tar-
geting rare variants.
One may classify existing rare variant association

methods into 2 categories: burden and nonburden tests.
Burden tests, such as SUM [1] and combined multivari-
ate and collapsing (CMC) [2], are based on the idea of
collapsing/aggregating effects of rare variants within a
region and they implicitly assume that all variation

affecting phenotype acts in the same direction and that
all (or a majority) of the variants within the region are
causal. Given these limitations of burden-based meth-
ods, several other methods, such as sequence kernel
association test (SKAT) [3], which build upon the kernel
machine regression framework, have been proposed.
However, nonburden tests lose power in the situations
where burden tests are optimal. Consequently, a data-
adaptive test called SKAT-O [4] that includes both bur-
den tests (ie, SUM) and SKAT as special cases has been
proposed.
Recently, we proposed a 2-step method rare variant

Partial Least Squares (rPLS) [5] to reveal possible genetic
effects related to both rare and common variants in
population-based designs. This approach can be consid-
ered as a burden test that is robust to the presence of
both deleterious and protective variants, as well as to the
existence of noncausal variants within a genomic region
being tested. We can apply the rPLS on any trait (quanti-
tative or categorical) and at the same time have the flex-
ibility of including non-single-nucleotide variant (SNV)
covariates and of adjusting for population stratification as
extra terms in the (generalized) linear model framework.
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An important question that has not yet been addressed
fully is the relative power of designs based on families and
designs using unrelated individuals for identifying rare dis-
ease variants. All of the aforementioned methods that
have been evaluated extensively are applicable to unrelated
samples only. Utilizing the opportunity provided by
Genetic Analysis Workshop 18 (GAW18), we compare
the power of a family-based method, the modified family-
based association test (FBAT)-v [6], for detecting rare
variants’ effects with the power of a number of popula-
tion-based methods described above, including SKAT,
SKAT-O, SUM, and rPLS. We further investigate the
effect on power of various phenotypes defined on the
same set of blood pressure measurements.

Methods
Data
The GAW18 data contain genotypes for odd-numbered
chromosomes from a real human whole genome sequen-
cing study with phenotypes at 4 time points and 200
replicates of the simulated longitudinal phenotype data.
In this study, we consider only genotypes on chromo-
some 3. We analyzed 1389 individuals in 20 pedigrees,
ranging from 27 to 107 individuals, for the family design.
One hundred and forty-two unrelated individuals having
observed genotypes were extracted from these pedigrees
and used for population-based analysis. Systolic blood
pressure (SBP) and diastolic blood pressure (DBP) mea-
surements at the first time point were taken as quantita-
tive traits. An individual with SBP ≥140 mm Hg or DBP
≥90 mm Hg, or who was on antihypertensive medications
at that examination was classified as a case. The resulting
binary trait corresponding to hypertension (HTN) disease
status was included in the analysis. Because age and sex
are known to influence blood pressure, we also included
them as covariates in the analyses.

Identification of rare variants for population and family
data notation
Suppose that genotypes for p SNVs (common and rare)
in a gene or a genomic region are available with xij = 0,
1, or 2 for i = 1,2,...,n and j = 1,2,...,p coding for the
number for minor alleles at locus j for individual i. The
goal is to test whether the variants within candidate
gene are associated with trait y. In this section, the
approach proposed for population data (rPLS) and other
existing methodologies employed in the paper is briefly
described.

Population-based tests
rPLS
The 2-step procedure rPLS [5] has been proposed for
finding an optimum linear combination of the variants
within a gene so that one can detect associations that

are too weak to be detected for individual variants. The
procedure starts with an initial variant selection step
before the information is aggregated in the gene. In this
study, we consider the following generalized linear
regression model:

g (μi) = β0 + xiβ + ziγ , i = 1, 2, . . . ,n (1)

where μi = E(yi), g is a known link function such as the
identity link for continuous and logit link for binary trait;
b0 is the intercept; xi = [xi1, xi2,..., xip] is the vector of p
variants from individual i and b is the corresponding p × 1
unknown coefficient vector; zi = [zi1, zi2,..., ziq] is the vector
of q non-SNV covariates for individual i; and g is the cor-
responding q × 1 unknown coefficient vector.
In the first step of rPLS, the elastic net (EN) estimator

of the b is obtained to determine a subset of SNVs with
nonzero coefficient estimates. The corresponding n × k
matrix of genotypes is denoted by where k (≤p) is the
number of SNVs selected by EN.
In the second step, we construct a supervariant, t, as

an optimal linear combination of the variants in using
partial least squares (PLS) [7]. Because t is a vector of
size n × 1 and it summarizes genotype information, we
can test the significance of b* in the model

g (μi) = β0 + tiβ
∗ + ziγ . i = 1, 2, . . . , n (2)

The p value calculated for testing H0 : β∗ = 0 against
HA: β∗ �= 0 can be used to assess whether the trait and the
gene (or genomic region) of interest are associated. Pros
and cons of the method are briefly discussed in the Con-
clusion section. We refer the interested reader to Turk-
men and Lin [5] for further details of the rPLS approach.
Other approaches for unrelated individuals
The sum test (SUM) [1] summarizes information across
multiple SNVs with only 1 degree of freedom (DF) by
creating a supervariant that is the sum of the number of
minor alleles of all SNVs and tests association between
the supervariant and the trait. As a kernel machine-based
test, SKAT aggregates genetic information across the
region using a kernel function and uses a variance com-
ponent test for association. The fact that both classes of
tests are optimal in certain conditions and the underlying
biological mechanisms are often unknown creates a need
for a data-adaptive test that is optimal for both scenarios.
Consequently, a new class of tests called SKAT-O [4] was
proposed. The test statistic for SKAT-O is an arbitrary
linear combination of burden test (SUM) and nonburden
test (SKAT), with SKAT-O identifying the optimal test
within this class to maximize power.

Family-based test
The FBAT-v method is among the first set of tests
incorporating the collapsing model into pedigree-based
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analysis [6]. Two schemes are used: (a) FBAT-v0, which
uses the collapsed sum of all the individual SNV contri-
butions, and (b) FBAT-v1, which is the same as FBAT-v0
except that each SNV contribution is weighted inversely
by its SNV frequency. Only rare variants (with minor
allele frequency [MAF] less than 0.01) within the region
analysed.

Software
We carried out our analyses using R packages glmnet,
SKAT, and plsgenomics, which were downloaded from
http://cran.r-project.org/. FBAT analysis was done using
FBAT software (FBAT v2.0.4 beta1). All tuning para-
meters needed in the implementation of the methods
were set to their default values.

Results
In this section we report association analyses of 1 binary
trait (HTN), 2 quantitative traits (DBP, SBP), and the first
principal component (PC1) obtained from these 2 quanti-
tative traits with 1,002,216 SNVs on chromosome 3. The
MAF distribution was severely skewed toward low-
frequency alleles.
Using the base-pair locations of the SNVs, we assigned

each SNV to a gene based on RefGene sequence records
from the UCSC Golden Path. This procedure assigned
432,542 SNVs into a total of 1057 genes and the median
number of SNVs within the genes was approximately
430. Among them, 1014 genes contain between 1 and
2000 SNVs, while the number of SNVs for the remaining
43 genes ranges from 2023 to 10,144. In the simulating
model, 27 and 21 of 1057 genes are assumed to be asso-
ciated with DBP and SBP, respectively. The union of
these genes (yielding 30 genes given that there are 18
causal genes that are associated with both SBP and DBP)
was considered to be associated with HTN and PC1. We
carried out analyses using rPLS, SKAT, SKAT-O, SUM,
and FBAT-v methods for variants in each gene using a
gene-based approach.

Unrelated individuals
The top causal variants for the simulated phenotypes
DBP and SBP on chromosome 3 are in the gene MAP4.
Consequently, we first explored the performance of
population- based tests for detecting MAP4. Quantita-
tive traits DBP, SBP, and PC1 were analyzed. Table 1
summarizes the results based on 200 replicates. Power is
defined as the percentage of 200 replicates for which
MAP4 is found to be significant, whereas the type I
error is the average percentage of all noncausal genes
that are found to be significant, that is, (total number of
false positives)/[(number of noncausal genes)*200],
where the number of noncausal genes is 1030, 1036,
and 1027 for the traits DBP, SBP, and PC1, respectively.

These calculations were done using the nominal a =
0.001 threshold. Table 1 indicates that SKAT and
SKAT-O methods were either liberal (eg, SBP) or con-
servative (eg, DBP) depending on the considered trait,
yet failed to detect MAP4 in any of the replicates. The
SUM test provided higher power compared to SKAT
and SKAT-O, with a slight increases in type I errors.
On the other hand, rPLS had the highest power to
detect MAP4 for all 3 quantitative traits, while type I
errors were slightly elevated.
Table 2 provides a more global view for the perfor-

mance of the population-based tests by examining fre-
quency of successful identifications for each causal gene.
Because SKAT and SKAT-O performed at par, we have
only included results for SKAT-O. Here, a gene is listed
if it was detected at least 10 times out of 200 by any
method for the traits SBP, DBP, or PC1. The genes listed
in Table 2, except SCAP, are causal for all traits, which is
associated only with SBP. SEMA3F is a notable gene that
could not be detected by any of the methods for the trait
DBP but was detected 68 times with rPLS when PC1 was
used. Four causal SNVs within SEMA3F have moderate
and similar effect sizes for DBP and SBP. Therefore, com-
bining information in DBP and SBP using the first PC
seems to strengthen the signal and lead to higher power
for detecting the association. Overall, Table 2 also
demonstrates that the rPLS method is the most powerful
compared to the other population-based methods, while
having a slightly larger type I error that is still quite close
to the nominal level.
Another important feature of the rPLS is its ability to

identify the most important SNVs within a genomic
region, a unique feature not available in the other

Table 1 Power and type I error for population-based
methods at a = 0.1%

DBP SBP PC1

Method Power Type I Power Type I Power Type I

SKAT-O 0% 0.06% 0% 0.12% 0.50% 0.10%

SKAT 0% 0.05% 0% 0.12% 0.10% 0.10%

SUM 3% 0.12% 1.5% 0.12% 0% 0.12%

rPLS 13.5% 0.14% 20.5% 0.14% 14% 0.13%

Table 2 Number of times that causal genes were
detected (at least 10 times) out of 200 replicates by any
method

DBP SBP PC1

Gene SKAT-
0

SUM rPLS SKAT-
0

SUM rPLS SKAT-
0

SUM rPLS

MAP4 0 6 27 0 3 41 1 0 28

SEMA3F 0 0 0 0 0 3 0 6 68

SCAP 0 0 0 2 0 16 0 0 0
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methods. This can be done by simply ranking the
weights (components of the first PLS loading vector)
employed to find optimum linear combination. For
instance, when we considered the SBP trait for replicate
5 in which MAP4 was detected, the ranking of the load-
ings indicated that causal SNV 3_48040284 had the lar-
gest value.

Family-based versus population-based design
For the family-based study, only 2 traits (HTN with 30
causal genes and SBP with 21 causal genes) and the fifth
replicate were considered because of the computational
burden. In addition to the causal genes, 50 noncausal
genes were randomly selected to gauge type I error and
accuracy rates that were calculated at a = 0.1%. Here, the
type I error is equal to the number of significant unasso-
ciated genes divided by 50, while the power to detect
association with SBP (HTN) is equal to the number of
significantly associated genes divided by 21 (30). Accu-
racy is defined as the proportion of true results (both
true positives and true negatives).
As Table 3 indicates, none of the population-based

methods was able to detect association with HTN, but
they had zero type I error. rPLS is the only population-
based method that identifies one of the causal genes (ie,
MAP4) for SBP, so the highest accuracy was achieved by
rPLS. Although 2 versions of FBAT-v give larger powers,
they had inflated type I errors.

Conclusions
Our analyses based on unrelated individuals have found
MAP4, SEMA3F, and SCAP genes to be associated with
the traits for at least 10 replicates when rPLS is employed.
It has been shown that the choice of the trait can affect
the power of the test regardless of the methodology used.
rPLS was the most powerful among the population-based
tests without considerably elevated type I error. In general,
the initial variant screening step in rPLS can lead to an
elevated type I error, but as shown by Turkmen and Lin
[5], the increase in type I error becomes negligible when
the signal-to-noise ratio decreases (ie, more noncausal

variants are present in the gene than causal ones), which is
a realistic scenario encountered in applications. SKAT and
SKAT-O were much less consistent in terms of controlling
type I error, while the SUM test was always liberal. Over-
all, rPLS has the advantage of a lesser DF than the burden
tests, while it does not depend on the strict assumption
that all SNVs have common effect size and direction, nor
does it need to use a rare variant threshold. Furthermore,
the optimal projection vector obtained in rPLS can be
used to determine which SNVs within a gene are more
important by quick evaluation of magnitudes, a feature
not available in other methods.
FBAT-v yielded higher powers compared to results

based on unrelated individuals but failed to control type I
error rate. This is most likely a result of the existence of a
large number of noncausal rare variants within the region.
As mentioned in the original paper [6], linkage disequili-
brium between causal and noncausal SNVs and lack of
normality by restricting to rare variants could be other fac-
tors that are responsible for the inflated false positives.
In conclusion, although family-based methods can be

more powerful because they can make fuller use of
available data, further research is needed to find ways to
control the type I error rate. Absent a more appropriate
family-based method, rPLS emerges as a viable alterna-
tive for analyzing population-based data.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AST and SL conceived the project, designed the algorithm and wrote the
manuscript. AST implemented the algorithm and analyzed the data. SL
supervised the research and polished the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements
The authors would like to acknowledge the NIH grant R01 GM031575 that
supports GAW18 data providers. The GAW18 whole genome sequence data
were provided by the T2D-GENES Consortium, which is supported by NIH
grants U01 DK085524, U01 DK085584, U01 DK085501, U01 DK085526, and
U01 DK085545. The other genetic and phenotypic data for GAW18 were
provided by the San Antonio Family Heart Study and San Antonio Family
Diabetes/Gallbladder Study, which are supported by NIH grants P01
HL045222, R01 DK047482, and R01 DK053889.
This article has been published as part of BMC Proceedings Volume 8
Supplement 1, 2014: Genetic Analysis Workshop 18. The full contents of the
supplement are available online at http://www.biomedcentral.com/bmcproc/
supplements/8/S1. Publication charges for this supplement were funded by
the Texas Biomedical Research Institute.

Authors’ details
1Department of Statistics, The Ohio State University, 1179 University Drive,
Newark, OH 43055, USA. 2Department of Statistics, The Ohio State University,
1958 Neil Avenue, Columbus, OH 43210, USA.

Published: 17 June 2014

References
1. Pan W: Asymptotic tests of association with multiple SNPs in linkage

disequilibrium. Genet Epidemiol 2009, 33:497-507.

Table 3 The power, type I error, and accuracy results for
the fifth replicate traits HTN and SBP at a = 0.1%

HTN (30C, 50NC) SBP (21C, 50NC)

Method Type 1 Power Accuracy Type 1 Power Accuracy

FBAT-v0 4.00% 3.33% 61.25% 10.00% 9.52% 66.20%

FBAT-v1 2.00% 3.33% 62.50% 6.00% 9.52% 69.01%

SKAT-0 0.00% 0.00% 62.50% 0.00% 0.00% 70.42%

SKAT 0.00% 0.00% 62.50% 0.00% 0.00% 70.42%

SUM 0.00% 0.00% 62.50% 0.00% 0.00% 70.42%

rPLS 0.00% 0.00% 62.50% 0.00% 4.76% 71.83%

C, causal genes; NC, noncausal genes.

Turkmen and Lin BMC Proceedings 2014, 8(Suppl 1):S58
http://www.biomedcentral.com/1753-6561/8/S1/S58

Page 4 of 5

http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.ncbi.nlm.nih.gov/pubmed/19170135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19170135?dopt=Abstract


2. Li B, Leal SM: Methods for detecting associations with rare variants for
common diseases: application to analysis of sequence data. Am J Hum
Genet 2008, 83:311-321.

3. MC Wu, S Lee, T Cai, Y Li, Boehnke M, Lin X: Rare variant association
testing for sequencing data using the sequence kernel association test
(SKAT). Am J Hum Genet 2011, 89:82-93.

4. Lee S, Wu MC, Lin X: Optimal tests for rare variant effects in sequencing
association studies. Biostatistics 2012, 13:762-775.

5. Turkmen AS, Lin S: An optimum projection and noise reduction approach
for detecting rare and common variants associated with complex
diseases. Hum Hered 2012, 74:51-60.

6. Yip WK, De G, Raby BA, Laird N: Identifying causal rare variants of disease
through family-based analysis of Genetic Analysis Workshop 17 data set.
BMC Proc 2011, 5(suppl 9):S21.

7. De Jong S: SIMPLS: an alternative approach to partial least squares
regression. Chemometr Intell Lab Syst 1993, 18:251-263.

doi:10.1186/1753-6561-8-S1-S58
Cite this article as: Turkmen and Lin: Identifying rare variant
associations in population-based and family-based designs. BMC
Proceedings 2014 8(Suppl 1):S58.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Turkmen and Lin BMC Proceedings 2014, 8(Suppl 1):S58
http://www.biomedcentral.com/1753-6561/8/S1/S58

Page 5 of 5

http://www.ncbi.nlm.nih.gov/pubmed/18691683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18691683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21737059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22699862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22699862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23154579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23154579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23154579?dopt=Abstract

	Abstract
	Background
	Methods
	Data
	Identification of rare variants for population and family data notation
	Population-based tests
	rPLS
	Other approaches for unrelated individuals

	Family-based test
	Software

	Results
	Unrelated individuals
	Family-based versus population-based design

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

