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Abstract

Admixture mapping and association testing have been successfully applied to the detection of genes for complex
diseases. Methods have also been developed to combine these approaches. As an initial step to determine the
feasibility of combining admixture and association mapping in the context of whole genome sequencing, we have
applied several methods to data from the Genetic Analysis Workshop 18. Here, we describe the steps necessary to
carry out such a study from selection of reference populations and preprocessing of data through to the testing
itself. We detected one significant result with a Bonferroni corrected p-value of 0.032 at single nucleotide
polymorphism rs12639065. Computing local ancestry for Hispanic populations was challenging because there are
relatively few methods by which to handle 3-way admixture, and publicly available Native American reference
panels are scarce. However, combining admixture and association is a promising approach for detection of
quantitative trait loci because it might be able to elevate the power of detection by combining 2 different sources
of genetic signal.

Background
Whole genome sequencing (WGS) is fast becoming a
feasible technology for use in genetic studies of complex
traits. Such a rich source of data allows for many metho-
dological approaches; however, with the sheer increase in
volume of data, alternatives must be evaluated with regard
to their validity and power. For example, in the context of
marker panels, methods for admixture mapping and
association testing have been used for detection of genes
for complex traits [1-3]. Combined admixture and associa-
tion approaches have also been developed [4-8]. As an
initial step to determine the feasibility of a combined
approach in the context of WGS, we have applied several
methods to data from the Genetic Analysis Workshop 18
(GAW18). We demonstrate the use of estimates of local

and global ancestry in the context of an admixed popula-
tion and both combine and compare ancestry information
with the use of genetic association testing. Our goals are
to (a) identify the steps and issues in estimation of local
and global ancestry proportions for an admixed population
that is best represented by more than 2 reference popula-
tions, (b) construct a series of models and test statistics
that use ancestry and/or genotype data, (c) perform tests
on chromosome 3 data from the GAW18 workshop for
both systolic blood pressure (SBP) and diastolic blood
pressure (DBP), and (d) compare the tests with respect to
findings.

Methods
Study samples
The GAW18 data set consists of WGS data that were
obtained for Mexican American families sampled from
San Antonio, Texas, as a part of the Type 2 Diabetes
Genetic Exploration by Next-Generation Sequencing in
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Ethnic Samples (T2D-GENES) consortium [9]. The
genotype data were cleaned of Mendelian errors for
959 individuals, including 464 individuals who had been
sequenced, with the genotypes of the remaining individuals
imputed on the basis of genome-wide association data.
The ancestry estimates in this article were produced for

all individuals using chromosome 3 markers. The regres-
sion analysis was performed on chromosome 3 on a set of
132 unrelated individuals with genotype, SBP, and DBP
data as measured at their first examination. Simulated Q1
traits not influenced by individual genotypes were used for
type I error rate assessment.

Ancestry estimation
Local ancestry is defined as the number of copies of chro-
mosomes inherited from a parental population at a given
genomic location, resulting in a mosaic of segments of dis-
tinct ancestry across the chromosome and, equivalently,
ancestry switches between those segments [6]. Historically,
methods for local ancestry estimation have used coarse
marker maps with much work done on constructing
ancestry-informative marker (AIM) panels with a size of a
few thousand markers over the whole genome. AIM
panels typically incorporate markers with large frequency
differences between the ancestral populations and minimal
linkage disequilibrium (LD) between the AIMs; however, it
has been suggested that using a denser set of markers
naturally provides more information for local ancestry
estimation [10].
Several newer methods allow for higher density marker

panels and background LD, but most do not readily allow
for multiple-way admixture. The method that we used,
LAMP-LD, combines window-based processing within a
hierarchical Hidden Markov Model and takes as an input
the genotypes of the admixed individuals as well as phased
haplotype reference panels representative of the ancestral
populations [11]. We produced the most likely pair of
local ancestries at each marker with LAMP-LD software
release 1.0. Global ancestry proportions were estimated by
averaging local ancestry estimates over all chromosome
3 markers used.

Statistical models
Multiple linear regression models were fit to individual
log-transformed blood pressure measurements with global
ancestry proportions of European, Native American, and
African descent as explanatory variables. Additional cov-
ariates were selected based on forward stepwise selection
with a 0.05 significance level, resulting in log(SBP) with
global ancestry, age, and blood pressure medication used
as explanatory variables and log(DBP) with global ancestry
and blood pressure medication used as explanatory
variables. We assumed an additive genetic model using
counts of minor alleles, g, with 0 ≤ g ≤ 2. Because of

imputation, g is not always an integer. For each marker,
local ancestry was coded into dummy variables represent-
ing each unique combination of ancestry: DEE, DAA, DNN,
DEA, DEN, and DNA where E, N, and A represent European,
Native American, and African ancestry, respectively, for
the allele. Four tests were conducted over chromosome 3
for the logarithm of each of the 2 blood pressure measure-
ments, denoted by y, based on the following models:
Model 1 (null): y = a + X’b + ε
Model 2 (association): y = a + X’b + bgg + ε
Model 3 (admixture): y = a + X’b + [bAADAA +

bNNDNN + bEADEA + bENDEN + bNADNA] + ε
Model 4 (heterogeneous association and admixture):
y = a + X’b + [bAADAA + bNNDNN + bEADEA +

bENDEN + bNADNA] + bg,EE(g × DEE) + bg,AA(g × DAA)
+ b g,NN(g × DNN) + b g,EA(g × DEA) + b g,EN(g × DEN) +
b g, NA(g × DNA) + ε. Here, X represents baseline covari-
ates. Both Wald and likelihood ratio tests were used to
test for admixture (model 3 vs. model 1), association
(model 2 vs. model 1), association adjusted for admixture
(model 4 vs. model 3), and admixture and/or association
(model 4 vs. model 1). Wald and likelihood ratio test sta-
tistics (LRTS) are asymptotically chi-squared distributed
under the standard assumption of a normally distributed
error, ε. Local ancestry and genotype at a marker are not
independent; hence, genetic effects in the full model
(model 4) were stratified by individual local ancestry [6].
This also allows for heterogeneous genetic association.
To adjust for multiple comparisons, 3 permutation

techniques were used. First, an individual’s phenotype,
global ancestry, and covariates were randomized relative
to his or her genotype and local ancestry vectors. Empirical
significance thresholds for a family-wise error rate (FWER)
of 0.05 were computed based on 1000 permutations.
Second, for a marker significant for one of the tests
based on the FWER of 0.05, p-values were estimated
based on more than 5 × 107 permutations. Last, to assess
type I error rates, the admixture and/or association statis-
tics were computed on all markers used for 200 simulated
data sets for a trait not influenced by the genotype (Q1),
including sex and age as covariates.
In a follow-up analysis for a single marker, the model

below was used to explicitly test for heterogeneity of the
genetic association effect by comparison with model 4:
Model 5 (homogenous association and admixture):
y = a + X’b + [bAADAA + bNNDNN + bEADEA + bENDEN

+ bNADNA] + bgg + ε

Reference panels for local ancestry estimation
The current trend toward studying local admixture
focuses on continental origin as opposed to finer scale
identification to region of origin within a continent. It is
widely accepted that modern Hispanic populations, such
as the GAW18 population, are the result of recent
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admixture of 3 continental-level ancestral populations,
namely European, Native American, and African [12,13].
HapMap phase 3 release 2 genotypes for 112 unrelated

CEU (Utah residents with ancestry from Northern and
Western Europe) and 113 unrelated YRI (Yoruba in
Ibadan, Nigeria) individuals were used as proxy reference
panels for European and African ancestral components,
respectively [14]. For the Native American reference panel,
a subset of 64 individuals with at most third-degree
relatedness was obtained from the Human Genome
Diversity Project (HGDP) Native American populations
(Colombian, Karitiana, Maya, Pima, and Surui) [15,16].
Single-nucleotide polymorphisms (SNPs) with greater
than 0.2 missingness per marker were removed.
To avoid possible bias as a result of different pipelines

and phasing methods, HGDP and HapMap data sets
were phased using the segmented haplotype estimation
and imputation tool (SHAPEIT) method [17].

Data processing and merging
Whereas HapMap and HGDP reference data sets are based
on NCBI Build 36.3 genomic coordinates, the GAW18 data
set uses Build 37.3 coordinates. To allow for full confidence
in the mapping between the 2, only markers in the
genome-wide data set with available rs numbers in the
VCF GAW18 data files were used. Chromosome 3 markers
present in the 3 data sets were extracted. This resulted in a
set of 40098 SNPs (denoted by SNP40098) with an average
intermarker distance of 4932 bp.

Local ancestry estimation considerations
Johnson et al give estimated average global ancestry pro-
portions for the HapMap Mexican sample in Los Angeles
(MXL) and for a cohort of 492 parent-offspring trios
recruited from Mexico City (MEX1) [13]. Those propor-
tions are 49% European, 45% Native American, and 5%
African for the MXL panel and 31% European, 65% Native
American, and 3% African for the MEX1 panel.
Assuming a 2-way admixed population, an estimate for

the number of ancestry switches in a diploid genome is
given by the formula B = (2 × 2 × 0.01) TLz(1-z) where T
is generations since admixture, L is the total chromosome
length (224.6cM for chromosome 3 for the genetic map
used), and z is global proportion for one of the ancestral
components [13]. The same authors estimated 10 to 15
generations since admixture for Hispanic populations.
Besides SNP40098, 2 smaller subsets constructed by

selecting AIMs were also used. First, marker information
content for ancestry using the f value for all 40098
markers between each pair of the 3 reference populations
[18] was estimated. Based on the f value, 2 additional
marker sets were constructed. For the SNP6884 marker
set, which includes 6884 SNPs, all SNPs that have f >0.25
in at least one of the 3 comparisons between the reference

populations were included. For the SNP637 marker set,
which includes 637 markers, all SNPs in SNP40098 that
have f > 0.25 between both the CEU-HGDP and
YRI-HGDP reference populations were included. By
construction, SNP637 is a proper subset of SNP6884,
which is a proper subset of SNP40098.

Results and discussion
We first present results of ancestry estimation. Then we
provide findings from the statistical tests proposed. Last,
we interpret the regression model at a marker found to
have significant association and/or admixture.

Ancestry estimation
Assuming 12 generations since admixture and z = 0.49,
we estimated B = 26.9 average number of ancestry
switches and 27.9 average ancestry blocks in chromosome
3 for the GAW18 population. We used this result
together with the global ancestry proportions estimated for
MXL to evaluate different parameters for the LAMP-LD
method and different SNP subsets on which to base the
local ancestry estimation.
Ancestry estimates produced with LAMP-LD are sum-

marized in Table 1. This software allows for 2 parameters:
window size in number of SNPs and number of founders
in the virtual reference populations for the implemented
Markov chain [11]. Different values for the second para-
meter gave comparable global ancestry estimates; the runs
reported were based on 25 founders. The window-size
parameter should depend on the resolution of the marker
set used. All LAMP-LD runs were stable in terms of global
ancestry proportion estimates produced apart for the run
on windows of size 2. Both SNP6884 and SNP637 marker
sets produced unsatisfactory results with respect to the
number of ancestry switches estimated. It seems that the
software is optimized for marker densities similar to
the SNP40098 set [11]. In particular, the padding around
a window of any size seems to be fixed, which might be
the reason for the lower number of ancestry switches
produced by all runs with the smaller sets.
Local ancestry estimates based on the LAMP-LD run

for the SNP40098 marker set with window size 70 were
used in the subsequent linear regression models. This
run produced close to the desired number of ancestry
switches and global ancestry proportions. The slightly
higher average African ancestry can be explained by
2 individuals with close to 50% estimated African global
ancestry (51% and 53%). In summary, there were 2462
unique local ancestry vectors for the sample of 132
unrelated individuals.
The LAMP-LD method used ignores family structure;

however, using all family members for estimation of
local ancestry may improve the estimates because
LAMP-LD builds virtual reference populations at the
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training phase upon which it produces its estimates. As
validation, local ancestry was estimated with the set of
unrelated individuals only. For a marker (rs12639065)
found to have significant association and/or admixture,
the resulting ancestry vector was identical to that of the
full analysis.

Statistical tests
Permutation-based significance thresholds were com-
puted for a FWER of 0.05. Using these thresholds, no
significant results were found for the test of admixture,
test of association, and test of association adjusting for
admixture; however, one SNP remained significant for
the combined test of admixture and/or association for
the log(DBP) trait. All models, fit under both null and
alternative hypotheses included effects for global ances-
try proportions and the selected covariates. Table 2
summarizes the p-values for all tests at this SNP loca-
tion, rs12639065.
The SNP is located in an intergenic region between the

LSM3 and SLC6A genes. The minor allele frequency at
this marker is 0.364; a Pearson chi-square goodness-of-fit
test for departure from Hardy-Weinberg equilibrium gave
a p-value of 0.190. Testing the residuals for the full
model, the Shapiro-Wilk test for departure of normality

gave a p-value of 0.479. As expected, local ancestry
estimates do not change for any individual in the sample
for a region around the significant marker, from
14,317,580 bp to 14,513,695 bp (the marker itself is at
position 14,390,507 bp).
LRTS and Wald tests resulted in the same rank for

the admixture and/or association test, producing a per-
mutation p-value of 8.068 × 10-7, which corresponds to
a Bonferroni adjusted p-value of 0.032 (N = 40,098).
The permutation-estimated p-value is closer to the
Wald-based p-value of 9.974 × 10-7 and greater than the
LRTS- produced p-value of 2.118 × 10-7. This is in line
with our observations from the permutation threshold
runs, where the LRTS produced smaller p-values and a
not entirely uniform distribution but the Wald-based
permutation p-values were uniform as expected under
the null (data not shown).
To further evaluate the FWER, the admixture and/or

association statistics were computed on all markers in
SNP40098 for all 200 simulated data sets for the Q1 trait.
Sex and age were used as covariates and the minimum
p-values for each data set were retained. This resulted in
estimated FWERs of 0.05 and 0.04 compared with the
thresholds derived for the LRTS and Wald test statistic,
respectively (Table 2).

Table 2 Wald and likelihood ratio p-values at the significant marker for log(DBP)

Marker coordinates (Build 37.3) Test statistic Admixture Association Association adjusting
for admixture

Admixture and/or
association

P-value
(a-threshold)

df P-value
(a-threshold)

df P-value
(a-threshold)

df P-value (a-threshold) df

14390507 LRTS 2.237 × 10-4

(6.107 × 10-5)
4 5.878 × 10-3

(1.008 × 10-6)
1 6.597 × 10-5

(4.585 × 10-7)
5 2.118 × 10-7 (6.883 × 10-7) 9

Wald 3.843 × 10-4

(1.177 × 10-4)
4 7.035 × 10-3

(1.711 × 10-6)
1 1.909 × 10-4

(2.291 × 10-6)
5 9.974 × 10-7 (2.685 × 10-6) 9

The a-thresholds are permutation derived p-values required for achieving significance at a family-wise error rate of 0.05. P-values in bold are below the
respective thresholds.

LRTS, likelihood ratio test statistics.

Table 1 LAMP-LD ancestry estimates for different marker sets and parameters

Marker set Window size
(no. of SNPs)

Average global ancestral proportions Number of ancestry switches

European Native American African Mean Standard deviation

SNP40098 50 0.489 0.455 0.057 26.71 6.47

SNP40098 70 0.491 0.453 0.056 25.51 6.06

SNP40098 100 0.491 0.453 0.056 24.76 5.86

SNP6884 5 0.486 0.459 0.055 14.61 3.63

SNP6884 10 0.494 0.454 0.052 16.55 4.10

SNP637 2 0.430 0.458 0.112 5.02 1.84

SNP637 10 0.497 0.447 0.057 8.82 2.50

All estimates are based on 959 individuals using chromosome 3 markers. Bold italic type denotes ancestry estimates that were used in the subsequent linear
regression models.

SNP, single-nucleotide polymorphism.
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Heterogeneous association and/or admixture model at
rs12639065
Linear regression parameter estimates for model 4 for the
log(DBP) trait at rs12639065 are presented in Table 3.
All parameter estimates for the indicators for local ances-
try with at least one Native American allele are similar in
magnitude (0.138, 0.145, and 0.131 for DEN, DNN, and
DNA, respectively). Adjusting for the genotype at the
marker, a Native American local ancestry at this region is
related to a 15% higher DBP on average (e0.14 ≈1.15).
Two of these parameters are significant (p-values <0.004),
and although the parameter estimate for the indicator for
Native American and African local ancestry, DNA, is not
significant (p-value = 0.132), this is likely a result of the
small NA sample size.
Although the model suggests that for entirely European

local ancestry at this region, DBP is expected to be lower
compared with other local ancestries, a minor allele at
the marker seems to have a positive effect in such a case,
with DBP expected to increase by 13% per minor allele
carried at the SNP (e0.123 ≈1.13), and is also highly signifi-
cant, with a p-value of 9 × 10-5. Also significant is the
parameter estimate for the genotype stratified on Native
American and European local ancestry at the region;
DBP is expected to increase by 5% per minor allele
carried at the marker (e0.049 ≈1.05). Interestingly,
although marginally nonsignificant with a p-value of
0.064, given a Native American local ancestry at the
region, the minor allele has a negative effect for the trait
(DBP is estimated to be 7% lower per minor allele carried
at the marker with e-0.069 ≈0.93). All parameters for
stratified genotype effects with an African local ancestral
component were nonsignificant, possibly because of small
sample sizes.

To further illustrate the model 4 fit for log(DBP)
presented in Table 3, a person with average ancestral
proportions, no medication use, and no minor alleles at
the marker is expected to have a DBP of 60.3 if the local
ancestry at the region is entirely European and a DBP of
69.7 if the local ancestry is entirely Native American. This
compares with expected DBP levels of 77.1 and 60.7 for a
person with 2 minor alleles at the marker and entirely
European or entirely Native American local ancestry at
the region, respectively. The test for genetic heterogeneity
(model 5 vs. model 4) gave an LRTS p-value of 5.39 × 10-4,
which suggests that heterogeneity exists among the genetic
association effects. The association effect acts in different
directions given different ancestry in the region.

Conclusions
Combining admixture and association information is a
promising approach for detection of quantitative trait loci.
Local ancestry estimation must be performed before such
combined tests are conducted; however, producing quality
local ancestry estimates is challenging in a multiway
admixed population such as the one used in GAW18. To
the best of our knowledge, all proposed methods use some
form of reference panels, which serve as proxies for the
ancestral populations in the admixture. Although good
reference panels exist for many populations, we found that
obtaining such a proxy for the Native American ancestral
component present in Hispanic populations is particularly
difficult. Furthermore, using 3 different data sources
increases the complexity of the process because it necessa-
rily involves aligning and intersecting the sets used. We
did find the use of benchmarks to be helpful in evaluating
the ancestry estimates produced. Possible benchmarks for
assessing quality are global ancestry proportions for

Table 3 Parameter estimates for model 4 at the significant marker rs12639065 for log(DBP)

Factors Parameter estimate Standard error P-value
(Pr >|t|)

N1

Intercept 4.162 0.047 <2 × 10-16

Proportion Native American (NA) Global Ancestry -0.099 0.063 0.116

Proportion African Global Ancestry -0.325 0.024 0.118

Indicator for blood pressure medication use 0.124 0.024 1.32 × 10-6

DEN Indicator for European and NA local ancestry (LA) 0.138 0.047 0.004 67

DEA European and African LA -0.053 0.083 0.526 5

DNN Native American LA 0.145 0.049 0.004 26

DNA Native American and African LA 0.131 0.086 0.132 4

g × DEE Stratified genotype: European LA 0.123 0.030 9.06 × 10-5 30

g × DEN Stratified genotype: European and NA LA 0.049 0.022 0.026 67

g × DEA Stratified genotype: European and African LA -0.039 0.103 0.707 5

g × DNN Stratified genotype: Native American LA -0.069 0.037 0.064 26

g × DNA Stratified genotype: Native American and African LA -0.122 0.109 0.264 4

Bold type indicates p-values less than 0.05.
1Sample size after stratifying for local ancestry at the marker, e.g., 67 of the unrelated individuals had European and Native American ancestral alleles at
rs12639065.
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similar populations as well as model-based estimates for
the expected number of ancestral blocks in a chromo-
some. We did not use the family structure in our local
ancestry estimates. Methods for local ancestry estimation
that exploit the family structure should improve on the
quality of the estimates.
Although no significant results were detected for tests of

admixture, association, and association adjusted for
admixture, we did find a significant marker from a
combined admixture and/or association test. This may
indicate increased power of quantitative trait loci detection
when aggregating 2 different sources of genetic signal.
Simulation studies are necessary to evaluate the power of
a combined approach; however, it seems that the results
from our analysis demonstrate promise and the need for
further studies of such a method.
Finally, the regression model at the significant SNP

suggests that the genetic signal at the SNP does not act in
the same direction for different local ancestral back-
grounds. More work is needed to investigate the source of
heterogeneity in the association effect. Although it is
tempting to think of potential sources of heterogeneity as
a result of ancestry or environment, another possible
explanation may relate to differences in LD between the
ancestral populations. A more extensive study would be
needed to evaluate such differences and their effects.
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