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Abstract

The genetic basis of blood pressure often involves multiple genetic factors and their interactions with
environmental factors. Gene-environment interaction is assumed to play an important role in determining
individual blood pressure variability. Older people are more prone to high blood pressure than younger ones and
the risk may not display a linear trend over the life span. However, which gene shows sensitivity to aging in its
effect on blood pressure is not clear. In this work, we allowed the genetic effect to vary over time and propose a
varying-coefficient model to identify potential genetic players that show nonlinear response across different age
stages. We detected 2 novel loci, gene MIR1263 (a microRNA coding gene) on chromosome 3 and gene UNC13B
on chromosome 9, that are nonlinearly associated with diastolic blood pressure. Further experimental validation is
needed to confirm this finding.

Background
The genetic basis of a complex trait often involves multi-
ple genetic factors functioning in a coordinated manner.
The extent to which our genetic blueprint expresses also
depends on the interactions between genetic and envir-
onmental factors. Increasing evidence shows the impor-
tance of gene-environment (G × E) interactions in
determining the risk of a variety of diseases such as
respiratory diseases [1], obesity [2], and psychiatric disor-
ders [3]. For a review of G × E interaction, see the work
of Hunter [4]. The empirical evidence underscores the
importance of developing novel statistical approaches to
identify major genetic players that are sensitive to envir-
onmental stimuli and to further understand how they
function.
Blood pressure is a heritable trait influenced by several

biological pathways sensitive to environmental stimuli.
High blood pressure, or hypertension, affects more than
1 billion people worldwide. It damages an individual’s
body in many ways over time, leading to heart disease,

stroke, kidney failure, and other health problems [5]. Age
is known to be a risk factor for high blood pressure.
Systolic blood pressure rises with age, whereas the diasto-
lic blood pressure tends to fall. For people with preexist-
ing high blood pressure, this age-related pattern occurs
even if the blood pressure is well controlled with medica-
tion [6]. The reasons why blood pressure changes with
age are still poorly understood, but are a topic of intense
research. Thus, age should be an important predictor
when searching for genetic players responsible for hyper-
tension. However, few studies have considered an age-
dependent mechanism in their analysis.
The genetic response to age in blood pressure fits in well

with the classical G × E interaction framework. G × E
interaction typically refers to the manner in which geno-
types influence phenotypes differently in different environ-
ments [7]. From a biological point of view, G × E
interaction can be better viewed as the genetic responses
to environment changes or stresses [8]. Statistically, inter-
action is considered as a departure from additivity when
fitting a linear regression model with 1 or more product
terms, for example,* Correspondence: cui@stt.msu.edu
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Y = α0 + α1X + β1G + β2XG + ε = (α0 + α1X) + (β1 + β2X)G + ε (1)

where Y is a quantitative trait (diastolic blood pressure
in this analysis), G is the genetic variable, X is the envir-
onmental variable (age), and is the error term. This is a
classical linear model for G × E interaction analysis. As
can be seen, equation (1) automatically assumes a linear
interaction mechanism between G and X because the
coefficient for G is a linear function in X. However, the
contribution of the same gene to blood pressure may be
quite different at different age levels. This nonlinear
penetrance can be well understood by a statistical vary-
ing-coefficient (VC) model [9]. VC models allow the
coefficients to change smoothly and nonlinearly with
other variables so that one can explore the dynamic fea-
ture of a response over time with great flexibility and
nice interpretability [10].
In this work, we applied VC models to detect genetic

variants associated with diastolic blood pressure from the
Genetic Analysis Workshop 18 (GAW18) data with 142
unrelated individuals. We allowed the contribution of
genetic variants to blood pressure to vary over time via
varying coefficients. We further proposed a sequence of
hypothesis tests to evaluate whether the effect of a genetic
variant is sensitive to aging, and if it is, is it in a linear or
nonlinear fashion? Using this analysis, we identified 2
novel loci that show nonlinear effects over time to affect
blood pressure.

Methods
The model
The nonlinear VC model is defined as

Y = m (X,G) + σ (X) ε (2)

for given (X,G) and the response Y with E(ε|X,G) = 0
and Var (ε—X,G) = 1; σ 2(X) = Var(Y|X,G) is the condi-
tional variance function. The mean function is defined
as m(X,G) = α(X) + β(X)G, where β (X) is a smoothing
function in X. Under the VC modeling framework, the
effect of a gene is allowed to vary as a function of envir-
onmental factors, either linearly or nonlinearly, captured
by the model itself. Thus, the VC model has the poten-
tial to dissect the nonlinear penetrance of genetic var-
iants. Here we also allow nonlinear function of X with Y
modeled by α (X). This nonlinear term adjusts the non-
linear effect of X when estimating the nonlinear effect
of β(X). If we take α (X) = α0 + α1X, equation (1) is just
a special case of the VC model when β(X) = β1 + β2X.

Hypothesis testing
The following list shows all 4 mean models involved in
our analysis.

• Model 1: m(X,G) = α(X), no genetic effect at all;

• Model 2: m(X,G) = α(X) + βG, linear genetic effect
without interaction;
• Model 3: m(X,G) = α(X) + (β0 + β1X)G, linear
genetic effect with interaction; and
• Model 4: m(X,G) = α(X) + β(X)G, nonlinear
genetic effect.

We first assess whether the genetic coefficients vary
with × by formulating the following hypotheses,

H1
0 : β (X) = β for some constant β vs. H1

a : β (X) �= β for any β

Rejecting the null indicates that potential gene-age (G ×
age) interaction may exist. Otherwise, we conclude there
is no G × age effect and we fit mean model 2 to test for
association. Because the traditional linear interaction
model given in equation (1) is a special case of the pro-
posed VC model, we next test significance of a linear effect
if the above null is rejected, by formulating the following
hypotheses,

{
H2

0 : β (X) = β0 + β1X for some constants β0,β1

H2
a : β (X) �= β0 + β1X for any β0,β1

Failure to reject the null indicates that there is a linear
G × age effect, so we fit mean model 3 to assess associa-
tion. Otherwise, we conclude that the G × age interac-
tion is nonlinear. We then assess the nonlinear genetic
effect over age by formulating the hypotheses,

H3
0 : β (X) = 0, vsH3

a : β (X) �= 0

The rejection of the null indicates that the genetic
effect is sensitive to age in a nonlinear fashion. The
sequence of hypothesis tests stated above was suggested
by Ma et al [9] for optimal power to detect association.

Model implementation
We fit the varying coefficients with a B-spline technique
for both α(·) and β(·) functions. The X variable was first
transformed to make it more evenly distributed on each
subinterval used in the B-spline smoothing technique.
The great advantages of B-spline estimation over other
nonparametric techniques are simple implementation
and fast computing [9]. For each single-nucleotide poly-
morphism (SNP), α(X) in mean model 1 was estimated
by considering the following least square problem,

argmin{λs}N+p+1
s=1

∑n

i=1

{
Yi −

∑N+p+1

s=1
λsBs (Xi)

}2

The estimated α(X) has the form α̂(x) =
∑N+p+1

s=1
λsBs(x),

where N is the number of interior knots, p is the degree of
B-splines, and Gp = {Bs}s=1,2,...,N+p+1 is the set of basis B-
splines with degree p. For selecting the number of knots N
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and the degree p of the B-splines, we used the Bayesian
information criterion (BIC),

argmin(N,p)BIC(N,p) = argmin(N,p)log(τ̂2)+(N+p)log(n)/n,

where τ̂ 2 = 1/n
∑n

i=1

{
Yi − m̂ (Xi,Gi)

}2 Then the same

number of knots Nα and degree pα were applied to esti-
mate function α(X) when fitting mean models 2 to 4.
For mean model 4, the coefficient functions α(x) and

β(x) were estimated by,

argmin{θt}Nα+pα+1
t=1 ,{λs}N+p+1

s=1

n∑
i=1

⎧⎨
⎩Yi −

Nα+pα+1∑
t=1

θtBt (Xi) −
N+p+1∑
s=1

λsBs (Xi)Gi

⎫⎬
⎭

2

Thus we have α̂(x) =
∑Nα+pα+1

t = 1
θ̂tBt(x) and

β̂(x) =
∑Nβ+pβ+1

s=1
λ̂sBs(x), where Nβ and pβ are also

selected following the above BIC criterion.
The error term σ (X) can be assumed homogeneous

following a normal distribution or heterogeneous
without assuming a parametric distribution. When
the homogeneous assumption is made, the likelihood
ratio test can be applied to assess the significance
of H3

0. Otherwise σ 2(x) can be nonparametri-
cally estimated using the spline approximation

σ 2 (x) ≈
∑N+p+1

s=1
vsBs(x) and defining σ̂ 2(x) =

∑N+p+1

s=1
v̂sBs(x)

as the spline estimate, where v̂s =
(
v̂1, v̂2, · · · , v̂N+p+1

)T
minimizes

∑n

i=1

{
ε̂2 (Xi) −

∑N+p+1

s=1
vsBs (Xi)

}2

; that is,

v̂ = argminv
(
ε̂2 − Bv

)T
(ε̂2 − Bv), where

ε̂2 =
((
Y1 − m̂ (X1,G1)

)2, · · · , (Yn − m̂ (Xn,Gn)
)2)T

and

B =

⎛
⎜⎜⎝
B1 (X1)

B1(X2)
· · ·

B1(Xn)

B2(X1)
B2(X2)

· · ·
B2(Xn)

· · ·
· · ·
· · ·
· · ·

BN+p+1(X1)
BN+p+1(X2)

· · ·
BN+p+1(Xn)

⎞
⎟⎟⎠ .

Thus we have v̂ =
(
BTB

)−1
BT ε̂2, and(

σ̂ 2 (X1) , · · · , σ̂ 2 (Xn)
)T

= Bv̂ = B
(
BTB

)−1
BT ε̂2. Wild

bootstrap can be applied to assess the significance of H3
0

[11].

Results
We applied the above models to the GAW18 genome-
wide association data. We focused our analysis on dia-
stolic blood pressure (DBP) to identify any genetic
players that can explain the variability of DBP triggered
by nonlinear genetic penetrance over time. We treated
DBP as the response Y and age as the X variable. The
genetic variable G is coded following an additive model,
that is, G = 1, 0, −1, corresponding to genotype AA, Aa,
aa, respectively. In total, 142 individuals and 388,099

SNPs were left after removing SNPs with a minor allele
frequency less than 0.05. These SNPs are distributed on
odd-numbered chromosomes from chromosome 1 to
chromosome 21.
Figure 1 shows the Manhattan plots of p values when

assessing significance by fitting different models. The
overall p value patterns for the 3 models are quite similar.
Two known and 1 unknown gene show strong nonlinear
genetic effects (indicated by small p values in columns 7
and 8 in Table 1). A strong signal was detected in chro-
mosome 3 containing a microRNA coding gene,
MIR1263, and in chromosome 9 containing the gene
UNC13B. MIR1263 may play a regulatory role. The sig-
nals at gene UNC13B are quite consistent for the 3 mod-
els. This gene was reported to be related with increased
risk of nephropathy in patients with type 1 diabetes.
Nephropathy accounts for 40% of end-stage renal disease
and is associated with high cardiovascular morbidity and
mortality [12].
Table 1 lists SNPs with p values less than 5 × 10−7.

These SNPs show strong nonlinear effects over time to
affect DBP, especially for SNPs in chromosome 3 (indi-
cated by small p42 and p43 in Table 1). These SNPs can
be easily missed by fitting traditional linear models. For
illustration purposes, Figure 2 shows the fitted mean
DBP function and the genetic effects of 2 SNPs in genes
MIR1263 and UNC13B. For SNP rs9863717 in gene
MIR1263, DBP decreases after age 55 years for indivi-
duals carrying genotype GG, whereas it increases for
individuals carrying genotype AA. Thus, for a senior per-
son who carries genotype AA at this locus, the chance to
develop hypertension is higher than for others. For SNP
rs10972462 in gene UNC13B, large DBP variability
among the 3 genotype groups is observed after age 50
years, and a decreasing pattern is observed roughly after
age 65 years. Among the 3 genotype groups, DBP is
higher in the GG group, followed by the GA and AA
groups. From the prevention and therapeutic point of
view, people carrying genotype GG at rs10972462 locus
should pay special attention after age 50 years, and so
should those carrying AA genotype at rs9863717 locus
after age 65 years.

Discussion and conclusions
In this work, we proposed to model the genetic effect as a
nonlinear function of age. It is clear that the classical lin-
ear model, with or without interaction, is just a special
case of the VC model. However, the VC model has the
flexibility to capture potential nonlinear genetic effects
over time. Evidence of nonlinear genetic effects has been
reported previously. For example, Laitala et al [13]
reported the curvilinear genetic effect on interindividual
differences in coffee consumption over age. In a study of
congenital scoliosis in mice [14], the authors found that
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mutations in genes HES7 andMESP2 are sensitive to differ-
ent degrees of hypoxia, which is responsible for a nonlinear
increase in the severity and penetrance of vertebral defects.
Our analysis identified 2 novel loci associated with DBP
with nonlinear genetic effects. They can be missed by the
traditional linear interaction model. However, because statis-
tical significance does not necessarily imply causality, further
experimental validation is needed to confirm the finding.
As shown in Ma et al [9], the VC model loses power

because of high degrees of freedom in the test in cases

where the genetic effect is not very complex, such as in
a linear form. Thus one should assess constant or linear
effects first, followed by fitting the corresponding model
suggested by the results of the tests. In this analysis, we
found that the coefficients are constant for most SNPs.
Note that the function α(X) models the overall mean

of DBP over time when there is no genetic effect. When
a linear structure for α (X) (= α0 + α1X) is forced, we
observe inflated signals for testing H0 : β (X) = 0. Thus,
the incorporation of this nonlinear function can largely

Figure 1 Manhattan plots of the p values for assessing significance of:.A, H0 : β = 0 by fitting mean model 2; (B) H0 : β0 = β1 = 0
by fitting mean model 3; and (C) H0 : β(X) = 0 by fitting mean model 4. Solid red, blue, and gray lines correspond to significance levels of

10−6,10−6, and10−5, respectively.

Table 1 List of SNPs with p value <5 × 10−7

rs ID Gene name Chr p41 p31 p21 p42 p43
rs1086097 MIR1263 3 1.9 × 10−7 0.009 0.90 4.97 × 10−8 1.08 × 10−6

rs686697 MIR1263 3 3.4 × 10−7 0.005 0.76 9.24 × 10−8 3.41 × 10−6

rs483558 unknown 3 4.7 × 10−7 0.007 0.76 1.30 × 10−7 3.72 × 10−6

rs9863717* unknown 3 4.96 × 10−8 0.009 0.95 1.23 × 10−8 2.55 × 10−7

rs1575160* unknown 3 8.7 × 10−8 0.011 0.70 2.33 × 10−8 3.76 × 10−7

rs723877 UNC13B 9 4.3 × 10−7 1.25 × 10−6 2.37 × 10−5 6.1 × 10−4 0.02

rs10972462* UNC13B 9 9.5 × 10−8 6.96 × 10−7 1.31 × 10−5 2.3 × 10−4 0.007

*Indicates significant SNPs after Bonferroni correction. p41, p31, and p21 are p values for testing H3
0 : β(X) = 0 (mean model 4 vs. mean model 1),

H2
0 : β0 = β1 = 0 (mean model 3 vs. mean model 1), and H1

0 : β = 0 (mean model 2 vs. mean model 1), respectively; p42 and p43 are p values for

testing H0 : β(X) = β0 and H0 : β(X) = β0 + β1X, respectively. Small values of p42 and p43 indicate nonlinear G × E effect. The small p values for
those 3 SNPs with unknown gene names in chromosome 3 are in high linkage disequilibrium with those in gene MIR1263.
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reduce false positives. In this analysis we coded the
genetic variable G in an additive fashion, although other
disease models such as dominant or recessive can also
be assumed, while the optimal one can be selected
based on a model selection criterion such as BIC.
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