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Abstract

Genome-wide association studies have successfully identified common variants that are associated with complex
diseases. However, the majority of genetic variants contributing to disease susceptibility are yet to be discovered.
It is now widely believed that multiple rare variants are likely to be associated with complex diseases. Using
custom-made chips or next-generation sequencing to uncover the effects of rare variants on the disease can be
very expensive in current technology. Consequently, many researchers use the genotype imputation approach to
predict the genotypes at these rare variants that are not directly genotyped in the study sample. One important
question in genotype imputation is how to choose a reference panel that will produce high imputation accuracy
in a population of interest. Using whole genome sequence data from the Genetic Analysis Workshop 18 data set,
this report compares genotype imputation accuracy among reference panels representing different degrees of
genetic similarity to a study sample of admixed Mexican Americans. Results show that a reference panel that
closely matches the ancestry of the study population can increase imputation accuracy, but it can also result in
more missing genotype calls. Having a larger-size reference panel can reduce imputation error and missing
genotype, but the improvement may be limited. We also find that, for the admixed study sample, the simple
selection of a single best-reference panel among HapMap African, European, or Asian population is not
appropriate. The composite reference panel combining all available reference data should be used.

Background
Large-scale genome-wide association studies (GWAS)
based on common variants (a minor allele frequency
[MAF]≥5%) genotyping have only identified a small frac-
tion of the heritable variation of complex diseases. One
explanation may be that many rare variants (MAF <5%),
which are not included in the common genotyping plat-
forms (e.g., Affymetrix GeneChip array, Illumina Infinium
Beadchip), may contribute substantially to the genetic var-
iation of these diseases [1,2]. Using custom-made chips or
next-generation sequencing to uncover the effects of rare
variants on the disease can be very expensive with current
technology. Consequently, many researchers use the geno-
type imputation approach to predict the genotypes at
these rare variants that are not directly genotyped in the
study sample [3]. These predicted genotypes can then be

used to test for association, increasing the power and the
ability to resolve the causal variants.
Imputation methods work by combining a reference

panel of individuals genotyped at a dense set of single-
nucleotide polymorphisms (SNPs) with a study sample
genotyped at a subset of these sites [4]. These imputation
methods first phase the genotypes in the study sample
and then look for perfect or near-perfect matches
between the resulting haplotypes and the corresponding
partial haplotypes in the reference panel; matched haplo-
type patterns in the reference panel are used to predict
unobserved genotypes in the study sample. In this con-
text, one important question is how to choose a reference
panel that will produce high imputation accuracy in a
population of interest [5,6]. Most imputation analyses
have used reference panels composed of haplotypes from
public databases, like HapMap 3 and the 1000 Genomes
Project. These human genetic variation resources include
individuals from a variety of sampling locations in Africa,
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Asia, and Europe. One might only include the individuals
who most closely match the ancestry of the study popula-
tion as the reference panel [7]. This “best match” strategy
reduces the computational burden of imputation, but it
can yield suboptimal accuracy with using partial informa-
tion of diverse reference collections, or in studies with no
clear reference matches (e.g., admixed populations) [6].
For this latter situation, Huang et al [6] suggested gener-
ating a “weighted mixture” of the available reference
data. In contrast to the match approach, Howie et al [5]
demonstrated that larger and more diverse reference col-
lections could actually make it easier to identify haplo-
type sharing with simple models, thereby making
imputation faster and more accurate. Some researchers
have adopted a 2-stage approach for genotype imputa-
tion, in which a subset of individuals is selected for next-
generation sequencing, and the obtained whole genome
sequence (WGS) data is used as the reference panel,
together with the study sample made up of the remaining
samples genotyped on commercial genome-wide SNP
arrays [8]. This 2-stage approach creates a reference
panel that is genetically similar to the study sample and
can greatly increase the imputation accuracy, but comes
at the extra cost of next-generation sequencing. Several
studies [6,8] have compared and discussed various
choices of reference panels.
In this report, we analyze 464 individuals with both

WGS data and Illumina Infinium Beadchip GWAS data
from the Genetic Analysis Workshop 18 (GAW18) data
set. The objective is to compare genotype imputation
accuracy when adopting different reference panels.
Because the participants in the GAW18 data set are
Mexican Americans who are an admixed population
with differing degrees of Native American, European,
and, potentially, African ancestry in each individual, this
creates difficulty in selecting the ancestry-matched refer-
ence panel. Our results can thus provide evaluation of
imputation accuracy in studies of admixed populations.

Methods
Data
The GAW18 data set was drawn from a complex pedi-
gree-based study designed to identify rare variants influ-
encing susceptibility to type 2 diabetes on 1043
individuals from 20 Mexican American pedigrees. The
GAW18 data set included WGS data for 464 individuals
who meet SNP quality control criteria. Approximately
24 million SNPs passing a SNP filtering pipeline (see
GAW18 data description files) were identified in these
464 individuals. GWAS data obtained using different
versions of the Illumina Infinium Beadchips were pro-
vided for 959 individuals, including 464 with WGS, for
472,049 SNPs on odd-numbered autosomes.

This report focuses on analyzing 464 individuals with
both WGS and GWAS data. To maximize the available
sample size, genetically related individuals were not
excluded from our analysis. We only imputed SNPs on
chromosome 3. For WGS SNP data, we first obtained
the IDs of WGS SNPs that passed support vector
machine (SVM) and insertion/deletion (INDEL) proxi-
mity filters and were cleaned of Mendelian errors from
the file chr3-geno.csv.gz. We then extracted their corre-
sponding genotypes from the file chr3-seq.vcf.gz. We
included GWAS SNP genotypes that passed standard
quality control procedures and were cleaned of Mende-
lian errors from the file chr3-gwas.csv.gz.

Accuracy comparison among different reference panels
The objective is to compare genotype imputation accu-
racy when adopting different reference panels. Among
464 individuals with both WGS and GWAS data, we ran-
domly selected 345 individuals (approximately two-thirds
of 464) as the study sample. Software package IMPUTE2
(version 2.2.2) [4,5] was used to impute SNPs on chro-
mosome 3 that were represented on the reference panel
but not in the GWAS data. We compared results from 7
reference panels: (a) all 1094 individuals from 1000 Gen-
omes phase 1 with African, Asian, European, and Ameri-
can ancestries on approximately 37 million SNPs
(1000G-all); (b) 120 randomly selected individuals from
1000 Genomes phase 1 (1000G-random); (c) 246 indivi-
duals with the African ancestry (1000G-AFR), 286 indivi-
duals with the Asian ancestry (1000G-ASN), 381
individuals with the European ancestry (1000G-EUR),
and 181 individuals with the American ancestry (1000G-
AMR) from 1000 Genomes phase 1; and (d) 119 indivi-
duals with GAW18 WGS data not selected for the study
sample on approximately 24 million SNPs (GAW18-
WGS). It is worth mentioning that 1000G-random was
generated through 120 individuals selected randomly
from 1000G-all, which was intended to match the size of
GAW18-WGS and make the 2 reference panels more
comparable. Also, the sampling origins of 1000G-AFR
were, with sample counts in parentheses, African Ances-
try in Southwest US (61), Luhya in Webuye, Kenya (97),
and Yoruba in Ibadan, Nigeria (88); the sampling origins
of 1000G-ASN were Han Chinese in Beijing, China (97),
Han Chinese South (100), and Japanese in Tokyo, Japan
(89); the sampling origins of 1000G-EUR were Utah resi-
dents (CEPH) with Northern and Western European
ancestry (87), Finnish from Finland (93), British from
England and Scotland (89), Iberian populations in Spain
(14), and Toscani in Italy (98); and the sampling origins
of 1000G-AMR were Colombian in Medellin, Colombia
(60), Mexican Ancestry in Los Angeles, CA (66), and
Puerto Rican in Puerto Rico (55).
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To determine the order of genetic similarity of differ-
ent reference panels to the Mexican American study
sample, we selected a set of SNPs within which no pair
were correlated with linkage disequilibrium r2 >0.2. For
this set of nearly independent SNPs, we then computed
genome-wide identity-by-state (IBS) (i.e., the sum of the
number of IBS alleles at each locus divided by twice the
number of loci) between each pair of individuals in each
reference panel along with the study sample. Each refer-
ence panel’s degree of genetic similarity to the study
sample can be represented by its average genome-wide
IBS over all pairs of individuals.
We used the imputed reference panel genotypes to

evaluate the success of imputation based on GWAS data.
The imputation software IMPUTE2 does not estimate
the best-guess genotype of a SNP; instead, it estimates
the distribution of the genotype, providing probabilities
for each probable genotype. Therefore, a certain number
of maximum probabilities will exceed a threshold (e.g.,
0.9), and among these we ask what percentage of the
best-guess imputed genotypes disagree with the observed
WGS genotypes. In the meantime, we can calculate the
percentage of all imputed genotypes for which no prob-
ability exceeds the threshold (i.e., no call is made). Under
a given threshold, the above percentage of discordances
between imputed genotype calls and observed WGS calls
was used as a surrogate for the imputation error rate, and
the percentage of genotypes for which no call was made
was used as a surrogate for the missing genotype rate.
Note that the presented approach assumed no errors in
the WGS data.

Data transformation and program settings
WGS data in GAW18 was provided in vcf files. Software
package VCFtools (version 0.1.9) [9] was used to trans-
form vcf files to PLINK [10,11] PED format–files with
suffixes “.ped” and “.map.” Software package GTOOL (ver-
sion 0.7.5) [12] was then used to convert PLINK PED files
to the file format used by IMPUTE2–files with suffix
“.gen.” When performing IMPUTE2, we split chromosome
3 into 26 nonoverlapping analysis chunks (with each
chunk spanning ~5 megabases [Mb]), and adopted “pre-
phasing” functionality. These are suggested in the webpage
of IMPUTE 2 to speed up the analysis. We also performed
a postimputation filtering to exclude imputed SNPs that
had “info” metric for imputation certainty <0.5.

Results
We selected 55,389 nearly independent SNPs that exist in
all reference panels and the study sample. The average
genome-wide IBSs for the study sample for 1000G-AFR,
1000G-all, 1000G-random, 1000G-ASN, 1000G-EUR,
1000G-AMR, and GAW18-WGS are 0.655, 0.677, 0.678,
0.682, 0.683, 0.688, and 0.692, respectively, which

represents the degrees of genetic similarity to the study
sample from farthest to closest.
For all reference panels, discordance and missing rates

are calculated based on the 773,165 SNPs (on chromo-
some 3) that are present in both 1000 Genomes phase 1
and WGS data, but not present in the GWAS data.
Figure 1 shows discordance percentages (x-axis) versus
no-call percentages (y-axis) for different reference
panels. Each line on the plot was generated by repeating
calculations of 2 percentages for calling thresholds, ran-
ging from 0.33 to 0.99 for a reference panel.
Clearly, for thresholds >0.45, the GAW18-WGS reference

panel creates lower imputation error rates than the refer-
ence panels from 1000 Genomes phase 1 do. However,
GAW18-WGS can have higher missing genotype rates than
1000 Genomes references for most thresholds. These results
may indicate that a reference panel that closely matches the
ancestry of the study population can increase imputation
accuracy, but this can also risk losing diversity and thus
make it harder to identify haplotype sharing with simple
models, thereby resulting more missing genotype calls.
The reference panel made up of 181 individuals with

the American ancestry from 1000 Genomes phase 1
(1000G-AMR) created imputation error rates and miss-
ing genotype rates very close to those based on the refer-
ence panel made up of all 1094 individuals from 1000
Genomes phase 1 (1000G-all). However, when adopting
reference panels not containing the 181 Americans, the
produced imputation error rates and missing genotype
rates are much larger than those based on the 1000G-all
panel. Despite the much less diversity of the 1000G-AMR
panel than that of the 1000G-all panel, these results show
that the 181 Americans are what’s important in genotype
imputation. We can also find that, for the admixed study
sample, reference panels with well-defined single ancestry
(1000G-AFR, 1000G-ASN, and 1000G-EUR) are not
appropriate. The composite reference panels like 1000G-
all and 1000G-random should be adopted.
Interestingly, although the 1000G-ASN is, on average,

more genetically similar to the study sample than
1000G-AFR, the imputation error rates for 1000G-ASN
are much larger than those for 1000G-AFR. Also,
1000G-EUR has higher genetic similarity to the study
sample but similar imputation error rates, comparing
with 1000G-AFR. This may be a result of the inclusion
of people with African ancestry from the southwestern
United States in 1000G-AFR.
The reference panel made up of 120 randomly selected

individuals from 1000 Genomes phase 1 (1000G-random)
has slightly worse imputation error rates and missing
genotype rates than those based on the 1000G-all and
1000G-AMR panels. Although large sample size can
reduce imputation error and missing genotype, the
improvement can be limited.
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Discussion
Reference panels used in genotype imputation can be
obtained from publicly available databases or from a 2-
stage approach in which a subset of individuals in the
study population is selected for whole genome sequen-
cing. Two strategies create reference panels with different
degrees of genetic similarity to the study sample. Using
WGS and GWAS data of GAW18, this study explores
genotype imputation accuracy among reference panels
generated by these 2 strategies. Results show that a refer-
ence panel that closely matches the ancestry of the study
population can increase imputation accuracy, but it can
also result more missing genotype calls. Having a refer-
ence panel with larger size can reduce imputation error
and missing genotype, but the improvement can be lim-
ited. We also find that, for the admixed study sample, the
simple selection of a single best-reference panel among a
HapMap African, European, or Asian population is not
appropriate. The composite reference panel combining
all available reference data should be used.
Based on our results, the 2-stage approach for geno-

type imputation is recommended if the extra cost is
affordable. When adopting reference panels from pub-
licly available databases, one must include the indivi-
duals that most closely match the ancestry of the study
population as the reference panel. When the computa-
tional burden is a big concern, only the best-matched
individuals are included in the reference panel. In the
situation with no clear reference matches, larger and
more diverse reference collections are recommended as
long as appropriate calling thresholds are used.
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