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Abstract

of prediction accuracy.

Genetic Analysis Workshop 18 provided a platform for evaluating genomic prediction power based on single-
nucleotide polymorphisms from single-nucleotide polymorphism array data and sequencing data. Also, Genetic
Analysis Workshop 18 provided a diverse pedigree structure to be explored in prediction. In this study, we
attempted to combine pedigree information with single-nucleotide polymorphism data to predict systolic blood
pressure. Our results suggested that the prediction power based on pedigree information only could be
unsatisfactory. Using additional information such as single-nucleotide polymorphism genotypes would improve
prediction accuracy. In particular, the improvement can be significant when there exist a few single-nucleotide
polymorphisms with relatively larger effect sizes. We also compared the prediction performance based on genome-
wide association study data (ie, common variants) and sequencing data (ie, common variants plus low-frequency
variants). The experimental result showed that inclusion of low frequency variants could not lead to improvement

Background

Genomic prediction is an important problem in genet-
ics. It aims at predicting a phenotype outcome based on
information from genetic markers, population, pedigree
structures, and other relevant covariates. Recent studies
suggest that genomic prediction based on genome-wide
case control data (unrelated individuals) has limited pre-
diction accuracy [1]. First, the difficulty may be caused
by the polygenicity of complex traits, that is, many mar-
kers with small effects jointly affect the trait [2-4]. A lar-
ger sample size is needed to estimate those small effects
more accurately. A larger sample size also leads to the
improvement of prediction accuracy. Second, low fre-
quency variants (minor allele frequency [MAF] <5%)
have not been directly observed in genome-wide asso-
ciation studies (GWAS). The contribution of these low-
frequency variants has not been taken into account in
predictive models, which may result in the loss of pre-
diction accuracy.
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Genetic Analysis Workshop 18 (GAW18) provides
both genotyping data and sequencing data of approxi-
mately 1000 samples from 20 pedigrees. This brings a
good opportunity to evaluate genomic prediction from
the following 2 perspectives:

1. How do we integrate the pedigree structures and
genome-wide dense markers for evaluating the
power of genomic prediction?

2. Can we improve prediction accuracy by including
low-frequency variants?

Some pioneering studies suggested that integration of
phenotype information from relatives and informative mar-
kers can improve prediction accuracy [5-7]. Linear mixed
models (LMMs) have arisen as a useful tool for informa-
tion integration in this context [8,9]. The random effects
can used to model pedigree and the fixed effects can be
used to include informative markers. It is difficult to use
LMM when the number of fixed effects exceeds the num-
ber of samples. To overcome this difficulty, bayesian linear
regression [6] and bayesian alphabet methods [7] have
been proposed. Alternatively, an L; estimation procedure
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has been proposed for LMM, named “LMMLasso” [8].
Very recently, this model has been applied to association
mapping, where the random effects were used for popula-
tion stratification correction [9]. However, it is computa-
tionally too intensive to apply either LMMLasso or
bayesian linear regression to the genome-wide scale data
set from GAW18. The aim of this study is to provide an
efficient computational method to evaluate genomic pre-
diction and answer the 2 questions above.

Methods

Basic model

Let n be the sample size. We consider the following
LMM

y=XB8+Ga+u+e,
u~ N(0,0.2K), 1)
e ~ N(0,021),

where y € R"*! is the response vector; X ¢ g is the
matrix of covariates (fixed effects), including the inter-
cept and other covariates, such as age and gender; B is
the vector for regression coefficients of the covariates;
G € R™? is the genotype matrix and « is the coefficient
vector for p single-nucleotide polymorphisms (SNPs)
(fixed effects); u is the random effect from N(O,cruzl();
and e is the residual error with variance g2 Here the
covariance matrix K is the genetic relatedness matrix
that describes the pedigree structure among the indivi-
duals. The covariance matrix K can be constructed
according to the known pedigree information or esti-
mated from genome-wide SNP information.

Penalized linear mixed model

There is a difficulty in applying the model when d+p
+2>n,ie, the number of parameters exceeds the number
of samples (d is the number of covariates, p is the num-
ber of SNPs treated as fixed effects, 2 is the number of
variance components). To overcome this difficulty, we
use penalized LMM to perform model selection [8,9].
Consider introducing a penalty on the coefficient o
P(a) < t, where P(a) is the penalty and ¢ is some con-
stant. First, we can write down the log-likelihood of
LMM (1) by integrating out u and e as

L(c} 02, B,a) =logN(y|XB + Ge; 0. K + 0 1)

' @
=log N(y|XB + Ga; o, (K + 81))

where § = aez/a,f. By eigendecomposition, K = usu’-
After some algebraic operations, we have

L(8, 02, B,) = 7; (nlng(zmj) +logdet(S + 1) + 01”2 (y — XB — Ga)"U(S + 61) "' U(y — XB — Ga))
To maximize the above log-likelihood with the con-
straint P(a) <t, equivalently, we may minimize the
Lagrange form of the negative log-likelihood:
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min. ; <n log(2707) + logdet(S + 8T) + Ul“z (y —XB — Ga)'U(S +31) ' U(y — XB — Ga))m’(aj (3)

To optimize the penalized log-likelihood function, we
adopt an alternating strategy as follows:

Step 1: For fixed &, we can treat y — Ga as the working
response and use maximum likelihood (ML) or restricted
maximum likelihood (REML) to obtain (B, auz, 8) using
some recent algorithms proposed to efficiently solve the
optimization, such as FastLMM [10] and GEMMA [11].

Step 2: For fixed (8, auz, 8), the problem (3) becomes

min (2;2 (UT(y — XB — Ga)" (S + 1) (U (y — XB — Gu))) +P(a) @
oL el e

1 1
F=S+oh 20y -x8) M G- s.sn 20a
When we choose P(a) = ||e||;, the optimization problem
(4) becomes the standard Lasso problem [12]. In fact,
we may have some other choices of penalties, such as
the elastic net [13] and MC+ penalties [14]. Coordinate
descent algorithms can be used to solve the penalized
regression problem efficiently [14,15].

where

Implementation details

Because the optimization problem (3) is not convex, a
good initial point will help to find a better solution. We
started at o = 0, and used REML to initialize (B, cruz, 5).
As in Friedman et al [15], we used ¥ and G to calculate
the smallest A value such that all @ equal to zero. We
denote this ) as o. Then we generated a decreasing
sequence of ) values such that A;,; =ni;,i=0,1,..k
where k is the length of the A sequence. Let («, 8, auz, 8)i
be the solution corresponding to 1, When we were sol-
ving the (&, 8,02, 8);,1 for the regularization parameter
Aiv1, we always used (a,,B,ouz,é)i as the initial point.
This strategy accelerates the convergence of the algo-
rithm. Typically, we set n = 0.95, k = 20, and choose the
best X value by cross-validation.

Results
Data set and preprocessing
For the GAW18 data set, there are 959 samples from 20
pedigrees. In our study, we considered systolic blood
pressure (SBP) as the quantitative trait of interest.
Among all the samples, 849 individuals had at least one
blood pressure measurement. We considered the first
nonmissing measurement of SBP and used its log-trans-
formed value as the response y € R, with the age at
the corresponding measurement as the covariate. We
included the intercept as a fixed effect, giving us
X e R849X2-

For the genotype data matrix G, we focused on genetic
markers on chromosome 3. The reason we chose
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chromosome 3 was that we identified a significant signal
in the gene MAP4 by association tests on all 200 simu-
lated SBPs. This signal was significantly stronger than the
genetic background signal. We expected our method
could automatically detect it and include it as a fixed
effect.

We used both GWAS data and sequencing data to
evaluate the model performance. For GWAS data, we
applied basic quality control (MAF >0.05, missing rate
<0.05), which resulted in 33,248 SNPs for chromosome
3 (ie, Gguas € R849%33248) For sequencing data, there
were 602,512 SNPs for chromosome 3. We first applied
the same quality control criteria and then did linkage
disequilibrium pruning using the threshold r* = 0.9,
leaving 103,020 SNPs for chromosome 3 (ie,
Gyeq € RB849x103020) ' The matrix K is twice the kinship
matrix which is constructed based on pedigree
information.
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Results
Before we applied the proposed method for prediction,
we first estimated the variance that can be explained by
the pedigree structure. We used LMM to do this, and
included age and intercept as the fixed effects and two
times kinship matrix as the random component [2]. The
estimate of explained variance was 26.98% and 18.85%,
for the simulated and real phenotypes, respectively. This
could be an overestimate because members within the
same pedigree might share some environmental factors.
We applied penalized LMM to both GWAS data and
sequencing data to evaluate its performance on pheno-
type prediction. Here we chose the Lasso penalty (ie,
P(a) = |leell;). The results are shown in Figures 1 and 2.
We ran 10-fold cross-validation 20 times to generate
these boxplots. We reported the result for the A
sequence, A;,i=0,1,...20. When X = Ao, the model cor-
responds to LMM without genetic markers. As A;

by R?) of the simulated phenotype using GWAS data

Prediction accuracy (measuared
I

T T T T T

0.22—
0.2
0.18— T
o~
I - o
0.16— . !_,_l o
=
014 — ] 1
=
= gk

012 —

| | 1 1 |

o

1

T T T T T T T T

£ 500800007

1 -

1 | | 1 1 1 I 1 1 1 1

52 6 7(7

4(2{ {3) 8(15) 9(32) 10(44) 11(58
ndex of the regularization parameter

Prediction accuracy (measuared by Rz) of the real phenotype using GWAS data

12(69) 13(83 I4(106)15§111916(134)17(156)18(171) 19 (194) 20 (217)
(num er of SNPs)

T T T T T T T T T

T

T T T T T T | T T T T

the true value and the prediction value.

— T - & o
0.205 | ., T | | I T =
iy o] | I -
029 ‘ I ! =
_ - | I
0.285 — T T i - i '
=T T bl -~ - T | |
o 0% | | | | _L . : -
o ol UUM ET R T 1 .
| - | | I
asrld I L : I : ; I I : : ! ‘ £
L —J | | | I I -
0265 | ! \ [ ! : [ : | : J'_ A AR Y | ' -
| I I I [ I : e B i I
028 | | | | ! ! 1, CERE B
i ody B el o
0255 | \ 1 \ 1 l L L L 1 L 1 l L 1 l L =
000 12 2@ 3@ ”sf 5(12) 6&1 ) 7(22) 8(33) 9(41) 10(52) 11(66 125?7 13 (109) 14 (124) 15 (144) 16 (167) 17 (188) 18 (202) 19 (216) 20 (238)
ndex of the regularization parameter Inum er of SNPs)

Figure 1 Prediction accuracy using GWAS data. Prediction results for the simulated phenotype and real phenotype using GWAS data. We ran
10-fold cross-validation 20 times to generate these boxplots. The x-axis is the index of the regularization parameter A. The corresponding
number of SNP markers used in the prediction model is given in brackets. Notice that these numbers are obtained using all samples. Index O
corresponds to prediction only using pedigree information, thus the corresponding number of SNP marker is zero. The y-axis is the R” between
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decreased, more and more genetic markers were used in
the model.

Based on the estimated variance components (26.98%
for the simulated SBP and 18.85% for the real SBP), it
seemed that we should do a better job for the simulated
phenotype. From Figures 1 and 2, however, we observed
that we had a better performance for the real pheno-
types (R* = 0.205 for the simulated SBP and R* = 0.285
for the real SBP). The reason was that the covariate
“age” contributed more for the real phenotypes. If we
did prediction for both the simulated and real pheno-
types without “age,” we could observe a slightly better
performance for the simulated phenotype.

Let us take a close look at the result using GWAS
data. We used the correlation between the true value
and predicted value to measure the accuracy. For the
simulated phenotypes, the accuracy is around R* = 0.125
for 1 = &o, and kept improving until A = A14. After that,
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the performance started to get worse. We can see that
accuracy improved from 0.125 to 0.205 as informative
genetic markers were included in the model. This
improvement should be mainly attributed to the simu-
lated association signals around the gene MAP4 (the
estimated effect size of rs11711953 is approximately
-7.25 with the SE 1.46). For the real phenotype,
although the performance was improved as a few
genetic markers are included, the improvement was
minor (R” increases approximately 1%). By checking the
association signals, we were unable to detect significant
associations.

For prediction using sequencing data, the model per-
formed almost the same as that of GWAS data based on
the simulated phenotypes. For the real phenotypes, the
best accuracy achieved was close to R* = 0.285. Com-
pared with the results of GWAS data, the prediction
was not improved by using sequencing data.

Prediction accuracy (measuared by Rz) of the simulated phenotype using sequencing data
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Figure 2 Prediction accuracy using sequencing data. Prediction results for the simulated phenotype and real phenotype using sequencing
data. We ran 10-fold cross-validation 20 times to generate these boxplots. The x-axis is the index of the regularization parameter . The
corresponding number of SNP markers used in the prediction model is given in brackets. Notice that these numbers are obtained using all
samples. Index O corresponds to prediction only using pedigree information, thus the corresponding number of SNP marker is zero. The y-axis is
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Discussion

In this study, we show that our model can integrate infor-
mation from pedigree structures and genetic markers.
This model will work well when there are a few markers
with relatively large effect, as suggested by the analysis of
the simulated phenotype. The reason is that the informa-
tion from the pedigree structure is a global average of sig-
nals from the genetic background and the shared
environmental influence. When there are some large
effects that are different from the genetic background, it is
better to extract them and consider them as fixed effects.
In this way, the markers with larger effects can be treated
locally. If all markers have similar effect sizes, the pro-
posed method can only have minor improvement, as sug-
gested by the analysis of the real phenotype.

In this study, we also compared the prediction perfor-
mance based on GWAS data (ie, common variants) and
sequencing data (ie, common variants plus low-frequency
variants). The experimental result showed that inclusion
of low-frequency variants could not lead to improvement
of prediction accuracy. To significantly improve the pre-
diction accuracy, the difficulty caused by polygenicity of
complex traits needs to be addressed; that is, many small
effects should be estimated more accurately. This implies
that a larger sample size is needed. Besides the recruit-
ment of more samples, an economic way is to combine
multiple GWAS data sets of correlated traits. The under-
lying assumption is that these correlated traits may share
some genetic factors. By borrowing information from
each other, it is expected that the prediction accuracy
can be dramatically improved.

Regarding the computational time, based on our cur-
rent MATLAB implementation, we can finish a 10-fold
cross-validation for the sequencing data in two hours.

Conclusions

In this study, genetic prediction can be improved by com-
bining pedigree structure and information from genetic
markers. We use a penalized LMM for this purpose and
we show that it is computationally feasible. The experi-
ment result based on the GAW18 data suggests that the
main prediction power comes from the pedigree informa-
tion. The additional improvement could be substantial if
the effect sizes of a few genetic markers are noticeable,
otherwise, could be minor. Integration of multiple GWAS
data sets for genomic prediction may be a promising
direction.
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