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Abstract

We conduct genetic association analysis in the subset of unrelated individuals from the San Antonio Family Studies
pedigrees, applying a two-stage approach to take account of the dependence between systolic and diastolic blood
pressure (SBP and DBP). In the first stage, we adjust blood pressure for the effects of age, sex, smoking, and use of
antihypertensive medication based on a novel modification of censored regression. In the second stage, we model
the bivariate distribution of the adjusted SBP and DBP phenotypes by a copula function with interpretable SBP-DBP
correlation parameters. This allows us to identify genetic variants associated with each of the adjusted blood
pressures, as well as variants that explain the association between the two phenotypes. Within this framework, we
define a pleiotropic variant as one that reduces the SBP-DBP correlation. Our results for whole genome sequence
variants in the gene ULK4 on chromosome 3 suggest that inference obtained from a copula model can be more
informative than findings from the SBP-specific and DBP-specific univariate models alone.

Background
A number of genome-wide association studies (GWAS)
involving large populations have been conducted to iden-
tify genetic variants associated with various single blood
pressure (BP) measures: systolic blood pressure (SBP),
diastolic blood pressure (DBP), or a linear function of
them. Although the correlation between SBP and DBP is
high, the results of the GWAS for each separately indi-
cate only partially overlapping sets of variants associated
with SBP and DBP. In this report, we model SBP and
DBP jointly, taking the association between them into
account. Constructing a bivariate model for these two
phenotypes can increase the power to detect causal var-
iants for one or both phenotypes, shedding more light
onto the complex underlying genetic processes.
We apply copula functions [1] to model the bivariate

distribution of SBP and DBP conditional on genetic var-
iants. Copulas are functions used to construct a joint
distribution by combining the marginal distributions

with a dependence structure, and they allow investiga-
tion of the dependence structure between the pheno-
types SBP and DBP separately from the marginal
distributions. This property of copula models is very
useful in identifying genetic variants that explain the
dependence between SBP and DBP. It is well known
that the Pearson correlation coefficient effectively mea-
sures the linear dependence of two random variables
coming from a bivariate normal distribution. However,
it may not be a good measure for other bivariate distri-
butions where the conditional mean of Yi given Yj is not
linear in Yj. Hence, we prefer a nonparametric correla-
tion measure. One frequently used measure based on
concordance and discordance is Kendall’s tau, which is
the probability of concordance minus the probability of
discordance. We also use upper and lower tail depen-
dence measures, which measure the level of dependence
in the upper-right quadrant tail and lower-left quadrant
tail of a bivariate distribution, respectively, as it might
be especially interesting to find pleiotropic variants
explaining association between high SBP and high DBP
or low SBP and low DBP.
Our analysis has two objectives: (a) to investigate the

association of some common variants with SBP and DBP
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under the joint model of SBP and DBP, and (b) to iden-
tify pleiotropic variants, which we define as variants that
explain the association between SBP and DBP.

Methods
San Antonio family studies data
The Genetic Analysis Workshop 18 (GAW18) data set
includes 153 unrelated individuals from the San Antonio
family studies pedigrees having SBP and DBP measure-
ments at one or more study exams, information regarding
current use of antihypertensive medication, and nonge-
netic covariates sex, age, and current tobacco smoking
status at some examinations. To retain all subjects, we
imputed missing age values by adding the mean time
interval between measurements to the last known age of a
subject. Some missing values of smoking status were also
imputed by examining the smoking patterns of individuals
over the four time points. We later verified that these
imputations did not lead to any significant differences in
parameter estimates and inference. Among the 153 unre-
lated individuals with measured phenotype data, 100 have
whole genome sequence data. We conducted our genetic
analysis on chromosome 3 in this group, considering only
the ULK4 gene previously found to be associated with
DBP [2]. We analyzed 1771 variants with minor allele
frequency (MAF) ≥0.05.

Phenotype definition
Before modeling the joint distribution of SBP and DBP
conditional on genetic variants, we first adjusted the
observed BPs for the effect of antihypertensive medication
and other nongenetic covariates. The GAW18 unrelated
pedigree members include hypertensive individuals (i.e,
with high BP) and some taking antihypertensive medica-
tion (Table 1). Adjusting BP for the effect of BP-lowering
medication is crucial when the objective is to identify
genes associated with high or low BP. Based on a simula-
tion study comparing several methods [3], the use of a
censored regression model conditional on both nongenetic
and genetic covariates was recommended, assuming that a
treated individual’s true “underlying” BP is higher than

that observed. For our analysis, we extend their censored
regression approach by deriving the maximum likelihood
estimate (MLE) of a conditional expectation that is in the
form of fitted BP plus a nonnegative adjustment term
depending on the observed BP and the nongenetic covari-
ates. It provides a more intuitive adjustment of the BP of
treated individuals than, for example, the nonparametric
method or assuming that treatment has the same constant
effect for each individual as in Tobin et al [3].
At each examination point j j, we separately fitted

censored regression models of BP conditional on nonge-
netic covariates age, sex, and smoking status with medi-
cation use as the censoring indicator. After conducting
standard residual analysis and model selection, we speci-
fied the models as

SBPi,j = γ0(j) + γ1(j) sexi + γ2(j) smokei,j + γ3(j)
(
agei,j − agej

)
+ εi,j (1)

DBPi,j = γ0(j)
′ + γ1(j)

′ sexi + γ2(j)
′ smokei,j + γ3(j)

′|agei,j − agej| + εi,j
′ (2)

where εi,j ∼ N
(
0, σSBP,j2

)
, εi,j

′ ∼ N
(
0, σDBP,j

2), agej =
nj∑
i=1

agei,j,

and i = 1, . . . ,nj n1 = 141,n2 = 97, n3 = 98, n4 = 37). This
formulation of the age covariates reflects previous findings
(see, eg, Ref. [4]) that SBP increases with age whereas DBP
decreases after the age of 55 to 60 years, which can be
approximated here with the sample mean age. We used
the “survreg” function in the “survival” package of R to fit
the censored regression models.
For individuals who received antihypertensive medica-

tion, we estimate the underlying BP with the MLE of
the conditional expectation of BP, given that the
observed BP is lower than the true underlying BP. For
illustration, under the model (1), the conditional expec-
tation is

E
[
SBPi,j|SBPi,j > SBPobs,i,j,Zi,j = zi,j

]
= γ(j)zi,j +

σSBP,j
2f

(
SBPobs,i,j|zi,j

)
1 − F

(
SBPobs,i,j|zi,j

) (3)

where zi,j denotes the vector of nongenetic covariates
with associated regression parameter γ(j) =

(
γ0(j), γ1(j), γ2(j), γ3(j)

)
,

and f , F are the normal probability density and cumulative
distribution functions, respectively, with mean γ(j)zi,j and
variance σSBP,j

2. The effects of the adjustment are evi-
dent in Figure 1, with the adjusted BP of treated indi-
viduals always higher than their observed BP. At each
of the first 3 examination time points, we obtained
residuals from fitting the censored regression models
(1) and (2). We disregarded the last examination time
because few BP measurements were available (see
Table 1). An untreated individual’s residual is the dif-
ference between observed and fitted BPs; a treated
individual’s residual is the difference between adjusted
and fitted BP. Finally, we averaged the residuals (over
j = 1,2,3) separately for SBP and DBP, and took these
mean residuals as our adjusted phenotypes.

Table 1 Number of unrelated individuals, hypertensive
individuals, and individuals on antihypertensive
medication

Exam 1 Exam 2 Exam 3 Exam 4

Total* 141 97 98 37

Hypertensive† 42 49 52 27

Receiving meds 27 30 45 25

*Number of unrelated individuals having SBP and DBP measurements and
current use of antihypertensive medication available at the examination time
point used in the phenotype adjustment.

†Number of hypertensive individuals (SBP >140 mm Hg or DBP >90 mm Hg
or on antihypertensive medications at that examination).
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Bivariate copula modeling
In the second stage, we first constructed the marginal
models for our adjusted phenotypes Y1 and Y2 given a
genetic variant X = x, assuming that the genetic variants
X are independent of the nongenetic variants Z. In the
marginal models

Y1,i = α0 + α1 xi + εi and Y2,i = β0 + β1xi + εi
′ (4)

we observed no evidence against the normality
assumptions for the error terms. We then used a copula
function C to build the bivariate distribution of Y1 and
Y2 conditional on genetic variants by combining the 2
marginal distribution functions F1

(
y1|X = x

)
and

F2
(
y2|X = x

)
. More specifically, we consider the bivariate

distribution function

F
(
y1, y2|X = x

)
= Cψ

(
F1

(
y1|X = x

)
, F2

(
y2|X = x

))
(5)

where F1 and F2 are the normal cumulative distribu-
tion functions with variances σ1

2 and σ2
2, respectively,

and ψ is the vector of copula parameters. To illustrate
the approach, consider the 2-parameter copula family

Cψ (u1, u2) =
{[(

u1−ϕ − 1
)θ

+
(
u2−ϕ − 1

)θ
]1/θ

+ 1
}−1/ϕ

(6)

with 0 ≤ u1, u2 ≤ 1, and the copula (or dependence)
parameters ψ = (ϕ, θ) ,ϕ > 0, θ ≥ 1. To explain the
association between Y1 and Y2, we use Kendall’s tau (τ ),
which is a measure of overall association based on con-
cordance and discordance, and we use lower and upper
tail dependence measures (lL, lU, respectively), which

explain the amount of dependence between extreme
values, and can give more insight in identifying pleiotro-
pic variants. For the copula family in (6), these depen-
dence measures become [1]

τ = 1 − 2
θ (ϕ + 2)

,λL = 2−1/θϕ ,λU = 2 − 2−1/θ (7)

We obtain MLEs of the marginal parameters
β = (β0,β1, σ2), β = (β0,β1, σ2) in equation (4) and the
copula parameters ψ = (ϕ, θ) in equation (6) by maxi-
mizing the likelihood function [1] with the general opti-
mization software implemented in the nlm function in
R. Variance estimates for the MLEs are obtained from
the inverse of the observed information matrix.
To address aim (a) concerning the marginal association

of a variant with each SBP and DBP under the bivariate
model (5), we test the null hypotheses H0 : α1 = 0 (vs.
HA : α1 �= 0) and H0 : β1 = 0 (vs. HA : β1 �= 0) with the
large sample Wald test statistic. We expect improved
inference under the bivariate model compared to inference
obtained by separate analysis of SBP and DBP, which we
refer to as the working independence model.
In contrast, for aim (b), which is to identify a variant

that explains association between SBP and DBP, the
copula model dependence parameters ϕ and θ, and
dependence measures (7) are of interest. We compare
estimates of Kendall’s τ ,λL, and λU under the full bivari-
ate model (5) that includes the genetic variant with the
corresponding estimates obtained under the bivariate
model without the variant (ie, the null model with
H0 : α1 = β1 = 0). According to the delta method, we

Figure 1 Scatterplots of observed versus adjusted BP for the first examination time, stratified by SBP and DBP. For untreated
individuals, adjusted BPs are equal to the observed BPs; consequently, red points fall on the diagonal.
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construct a confidence interval (CI) for the dependence
measures using large-sample standard errors. When the
CIs for a given association measure under the null and
the full model do not overlap, we conclude that the given
variant is pleiotropic. Use of CIs in this way is quite con-
servative. We also check whether the CI for λL or λU

under the full model includes 0. Note that the copula
model (6) only becomes an independent copula
C(u1, u2) = u1u2 when θ = 1 and ϕ goes to 0. However,
because it is practically impossible to identify all variants,
instead of testing independence, we search for variants
that reduce the magnitude of the overall dependence
measures, such as Kendall’s τ.

Results and discussion
For model selection, we note that the Akaike informa-
tion criterion (AIC) value under the copula model (6) is
much lower than the AIC under a bivariate normal
model, indicating that the copula model is a better fit.
For example, the AIC value under the copula model (6)
reported in Table 2 is 1227.6 compared to an AIC value
of 1337.8 under the bivariate normal model (not
shown). These AICs are comparable to those obtained
when conditioning on other variants. The aim (a) results
(Table 2) are thus limited to the Wald test p values of
the MLE estimates of the coefficients α1, β1 in (4) for
testing H0 : α1 = 0 and H0 : β1 = 0 under two models:
the working independence model and the bivariate
copula model (6) for single-variant analysis. We
observed some variants, including less common (0.05 ≤
MAF ≤0.10) and more common (MAF >0.10) variants,
that are identified by both models, but the p values for
testing H0 : α1 = 0 and H0 : β1 = 0 under the copula
model (with minimum p values 1.7 × 10−4 and 5.1 × 10
−5, respectively) are smaller than the p values under the
working independence model (with minimum p values
5.5 × 10−3 and 7.0 × 10−4, respectively). This includes
variants significantly associated with both BP pheno-
types under the joint copula model, although they are
not significantly associated at the 1% level with either
under the univariate phenotypic models (see Table 2).
Overall, the estimated genetic effect sizes are larger and
the estimated standard errors are slightly smaller under
the bivariate model.
Table 3 displays 2 of 10 variants yielding a substantial

reduction in point estimates of the upper tail dependence

measure λU under the bivariate model (5) conditional on
the variant. Compared to the null model when condition-
ing on a variant in the gene ULK4, Kendall’s tau and
lower tail dependence do not differ markedly. We
observe that without conditioning on any variant
(H0 : α1 = β1 = 0), the 2 phenotypes are moderately cor-
related with a Kendall’s tau estimate of 0.578, and higher
lower tail dependence than upper tail dependence (Table
3). Conditioning on the variant at 41,984,243 base-pair
position diminishes upper tail dependence measure λU at
0.01 level of significance (99% CI for λU includes 0); this
variant is also associated with SBP and DBP (see
Table 2). Figure 2 illustrates how it achieves a reduction
in upper tail dependence. Tail dependence can also be
reduced in the absence of strong marginal BP associa-
tions. For example, the variant at 41,971,559 base-pair
position is only modestly associated with SBP (p value =
0.040) and DBP (p value = 0.055), but the upper tail
dependence is reduced from 0.449 obtained under the
null model to 0.289 with a CI that includes 0 (Table 3).

Conclusions
In this report, we demonstrate how to model the bivari-
ate distribution of SBP and DBP with copulas and con-
duct appropriate inference for genetic association. The
proposed method is shown to be applicable by consider-
ing a single gene, and crude estimates of computation
time suggest that it is feasible to process 1 million var-
iants in less than a day, for example, by using one hun-
dred 2.5-GHz cores. Although estimating the bivariate
distribution is computationally more intensive than fit-
ting the working independence model, given the high
correlation between the phenotypes, a potential advan-
tage is that genetic associations can be detected with
higher power under a plausible joint model. Using joint
copula models, we were also able to identify candidate
variants explaining the upper tail dependence of SBP and
DBP. We generally observed strong linkage disequili-
brium between variants identified. By conducting joint
analyses of multiple variants in moderate linkage disequi-
librium, we achieved a much more significant reduction
in upper tail dependence (data not shown), and although
we observed some reduction in point estimates of lower
tail dependence and Kendall’s tau, the CIs still overlap
with those under the null model. Calling a comparison
significant when the CIs fail to overlap is a conservative

Table 2 Results of testing H0(α) : α1 = 0 or H0 (β) : β1 = 0 for variant at 41,984,243 base-pair position

SBP DBP

Working independence Bivariate copula Working independence Bivariate copula

Coefficient Estimate (SE) 11.1 (5.3) 16.7 (4.7) 7.2 (2.9) 8.4 (2.7)

p Value 4.0 × 10−2 3.8 × 10−4 1.5 × 10−2 1.6 × 10−3

The AIC value under the working independence model of SBP and DBP is 1318.4, and the AIC value under the bivariate copula model (6) is 1227.6.
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approach, but it is computationally efficient. As an alter-
native, a nonparametric bootstrap procedure could be used
to estimate the variance of the estimated difference
between dependence measures under the null and full
models, and to construct an approximate CI. To allow mul-
tiple testing adjustments, instead of checking whether the
CI for λL or λU under the full model includes 0, it would be
desirable to test each of the null hypotheses H0 : ϕ = 0 or
H0 : θ = 1, respectively, to obtain p values [5].
In principle, the extension of our approach to 3 or

more quantitative traits is straightforward; however, the
copula model (6) may not be ideal in this setting. It
involves some restrictions on the association structure,
and generally the Gaussian copula is used when there
are 3 or more traits. The approach could also be
extended to binary traits, but with some caution because
there is no unique copula identifying the joint distribu-
tion function of discrete variables [6].
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Figure 2 Scatterplots of the cumulative distribution function of Y1(F1) versus Y2(F2) without conditioning on any variant (left panel) and
conditional on the variant at 41,984,243 base-pair position (right panel). The indicated blue dots denote individuals with high adjusted
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