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Abstract

We consider analysis of Genetic Analysis Workshop 18 data, which involves multiple longitudinal traits and dense
genome-wide single-nucleotide polymorphism (SNP) markers. We use a multivariate linear mixed model to account
for the covariance of random effects and multivariate residuals. We divide the SNPs into groups according to the
genes they belong to and score them using weighted sum statistics. We propose a penalized approach for genetic
variant selection at the gene level. The overall modeling and penalized selection method is referred to as the
penalized multivariate linear mixed model. Cross-validation is used for tuning parameter selection. A resampling
approach is adopted to evaluate the relative stability of the identified genes. Application to the Genetic Analysis
Workshop 18 data shows that the proposed approach can effectively select markers associated with phenotypes at
gene level.

Background
The Genetic Analysis Workshop 18 (GAW18) data con-
sists of multiple longitudinal traits and dense genome-
wide single-nucleotide polymorphism (SNP) markers. A
commonly used approach for identifying markers asso-
ciated with traits is to conduct single-variant analysis
and then adjust for multiple comparisons on each trait.
However, for complex polygenic traits, single-variant
analysis methods may not be appropriate as they fail to
take into account the accumulated and/or joint effects
of multiple genetic variants on the traits. In addition,
analyzing each trait separately does not take into
account the correlation among traits, and thus can be
ineffective. To overcome these limitations, we developed
a joint analysis approach referred to as the penalized
multivariate linear mixed model (PMLMM). This
approach takes into account covariance of both random
effects and residuals and uses a group minimax concave
penalty (MCP) approach [1] for variant selection at the
gene level. A resampling approach is adopted to evaluate

the relative stability of the identified genes. Our analysis
of the GAW18 data indicates that the proposed
approach can effectively select markers associated with
multiple traits at the gene level.

Methods
Consider a genetic association study with longitudinal mea-
surements on N subjects, p genetic variants, and q environ-
mental exposure covariates. Here a genetic variant can be a
single SNP marker or a score representing a group of
SNPs. For subject i, suppose that there are ni longitudinal
measurements on m traits. Let Yi be the ni × m trait matrix
for subject i. Let Y be the n × m trait matrix for all the N

subjects, where n =
∑N

i=1
ni. The transpose of Y is

Y′ = (Y ′
1, · · ·,Y ′

N). Let Xi be the ni × p matrix consisting of
the genetic variant scores of subject i. Let Zi be the ni × q
covariate matrix. We center all the measurements to have
sample means equal to zero. When m = 1, this setting sim-
plifies to that in Schelldorfer et al [2].
Consider the multivariate linear mixed model

Yi = XiB + ZiCi + Ei, i = 1, ...,N, (1)

where B is a p × m matrix representing the effects of p
genetic variants on m traits, and Ci is a q × m matrix
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representing the subject specific effects of the covariates
Zi for the ith subject. We treat Ci as random effects.

Assume that (a) Ei ∼ MNni×m(0,
∑
1

, Ini), that is, Ei is

row-independent with column covariance matrix �1,
and each Ei is independent for i = 1, ...,N; (b)

Ci ∼ MNq×m(0,
∑
2

,D), where �2 is the column covar-

iance matrix and D is the row covariance matrix, and
each Ci is independent for i = 1, ...,N; (c) each Ei and Ci

is independent; and (d) �1 = �2 = �.
Then ZiCi + Ei ∼ MNni×m(0,

∑
,ZiDZ′

i + Ini) and

Y ∼ MNn×m(XB,
∑

,V) where V = Diag(V1, ...,VN) and

Vi = ZiDZ′
i + Ini, where Ini is an ni × ni identity matrix. A

more detailed description of this model can be found in
Liu et al [3].
From Dawid [4], the negative log-likelihood function is:

−�(B,V,
∑

) = constant +
n
2
log |

∑
| + m

2
log |V| + 1

2
tr(

−1∑
(y - XB)′V−1(y - XB)) (2)

Hastie et al. [5] suggest using �̂ = y′y/n for estimating∑
. We estimate D by using the estimates from m uni-

variate linear mixed models and subsequently get the

estimate V̂ of V as V̂i = ZiD̂Z′
i + Ini. Given

∑̂
and V̂ , we

can transform the negative likelihood function into a
weighted least squares criterion for estimating B, which

is tr(
∑̂−1

(y - XB)′V̂−1(y - XB)). For variant selection,

we adopt the group MCP approach [6]. The overall
penalized objective function is

Q(B) = tr(
∑̂−1

(y - XB)′V̂−1(y - XB)) +
∑p

j=1
ρ(||Bj||2;λ, γ ), (3)

where Bj is the jth row of B and

ρ(t;λ, γ ) = λ

∫ |t|

0
(1 − x/(γ λ))+dx is the MCP with tun-

ing parameter λ and regularization parameter γ [7].
For computation, we use a group coordinate descent

algorithm [1]. The group MCP involves a regularization
parameter and a tuning parameter. Generally speaking,
smaller values of γ are better at retaining the unbiased-
ness of the MCP penalty for large coefficients, but they
have the risk of creating objective functions that have
problems with nonconvexity [8], are difficult to opti-
mize, and yield solutions that are discontinuous with
respect to λ. Simulation studies by Breheny and Huang
[8] suggest that γ = 6 is a reasonable choice. Therefore,
we fix it to be 6 in our analyses. We search for the opti-
mal value of λ using 5-fold cross-validation.

Results
The GAW18 data set consists of dense genome-wide
markers with longitudinal measurements on systolic and

diastolic blood pressure (SBP and DBP) and other covari-
ates. Other measurements include gender, age, year of
examination, use of antihypertensive medications, and
tobacco smoking at up to 4 time points. In this study, we
analyze the 157 unrelated individuals using SBP and DBP
as traits and other medical and demographic covariates as
random effects. Gene annotations for SNP data are
obtained from http://www.scandb.org. SNPs in each gene
are scored using weighted sum statistics to generate gene-
level measurements [9]. After quality control, we have the
genetic scores of 10,400 genes for further analysis. SBP,
DBP, and genetic scores are standardized to have zero
means and unit variances. This procedure removes the
estimation of intercepts and makes the genes comparable.
We apply the proposed PMLMM to identify genetic var-

iants that are associated with both SBP and DBP at the
gene level. As a benchmark, we also analyze each trait
separately using a penalized linear mixed model (PLMM)
approach. Table 1 shows the genes identified using
PMLMM. Table 2 summarizes the overlaps of genes
selected using the different approaches. Although there is
overlap, PMLMM and PLMM identify significantly differ-
ent sets of genes. We evaluate the relative stability of iden-
tification of each gene using a resampling approach and
calculate the observed occurrence index (OOI) [10]. A lar-
ger value of OOI indicates that the corresponding identi-
fied gene is more stably identified. Table 1 also shows OOI
results. The identified genes have reasonably high OOIs.

Discussion
In this study, we analyze the GAW18 data and develop
a PMLMM approach. A multivariate linear mixed model
is used to model variance components among traits and
longitudinal measurements. A penalization approach is
adopted for variant selection. In the estimation proce-
dure, it can be considered heuristic to use

∑̂
and V̂ as

proposed. Assumptions (a) to (c) are standard in mixed
models, but the assumption that �1 = �2 may be restric-
tive. Because our study is to identify multitrait-asso-
ciated markers at the gene level, the restriction on
variance components does not affect the selection result
significantly. We are currently developing a similar
approach to update variance components with more
relaxed assumptions on �1 and �2. An iterative algo-
rithm can be implemented to solve for B,

∑
, and V. In

variant selection, our method is designed to search for
genes associated with all the traits considered. When
different sets of genetic variants are suspected to be
associated with different phenotypes, the sparse group
penalization approach [11] can be applied.

Conclusions
We have presented a penalized multivariate linear mixed
model (PMLMM) for detecting pleiotropic genetic
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associations among multiple traits in the presence of
pedigree structures. The proposed approach combines
the advantages of mixed models that allow for elegant
correction for pedigree-based family data and integrative
analysis of multiple traits. Compared with PLMM which
considers one trait at a time, the proposed PMLMM
can achieve better performance when the pleiotropic
effect is appropriately modeled.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors were involved in study design. JL conducted the numerical work.
All authors were involved in manuscript preparation, and read and approved
the final manuscript.

Acknowledgements
This study was supported by NIH grants CA142774, CA165923, and
CA120988, the VA Cooperative Studies Program of the Department of
Veterans Affairs, Office of Research and Development, and 2012LD001 from
National Bureau of Statistics of China. The GAW18 whole genome sequence
data were provided by the T2D-GENES Consortium, which is supported by
NIH grants U01 DK085524, U01 DK085584, U01 DK085501, U01 DK085526,
and U01 DK085545. The other genetic and phenotypic data for GAW18 were
provided by the San Antonio Family Heart Study and San Antonio Family
Diabetes/Gallbladder Study, which are supported by NIH grants P01
HL045222, R01 DK047482, and R01 DK053889. The Genetic Analysis
Workshop is supported by NIH grant R01 GM031575.
This article has been published as part of BMC Proceedings Volume 8
Supplement 1, 2014: Genetic Analysis Workshop 18. The full contents of the
supplement are available online at http://www.biomedcentral.com/bmcproc/

Table 1 Genes identified by PMLMM: estimates for SBP and DBP, and OOI

Gene SBP DBP OOI Gene SBP DBP OOI

MMEL1 0.002 −0.002 0.333 TMEM41B 0.027 0.033 0.403

CD52 0.085 0.060 0.697 ARNTL 0.024 0.006 0.247

DPH2 0.071 −0.032 0.323 SPTY2D1 0.025 −0.007 0.507

C8A 0.018 0.032 0.563 CHST1 −0.008 −0.031 0.540

DNAJB4 −0.028 −0.022 0.333 MRE11A −0.042 −0.007 0.623

HS2ST1 0.002 0.006 0.307 ENOX1 −0.068 −0.032 0.647

PROK1 0.006 0.010 0.373 LOC100132760 −0.041 0.048 0.693

THBS3 −0.004 0.001 0.337 SPRY2 −0.004 −0.005 0.297

C1orf182 2E-04 0.045 0.490 GABRG3 −0.027 0.006 0.573

TGFBR2 −0.033 −0.030 0.627 THBS1 0.023 0.028 0.353

LOC100129194 0.005 0.011 0.217 CSPG4 0.098 −0.012 0.880

LMOD3 −0.013 −0.028 0.493 C15orf27 0.047 −0.014 0.490

LOC653712 0.017 0.001 0.450 LOC100128570 0.026 0.019 0.283

LAMP3 0.034 0.008 0.627 HOMER2 0.024 0.013 0.250

EIF2B5 −0.014 −0.014 0.417 ADAMTS17 0.002 0.002 0.270

EHHADH 0.003 −0.052 0.677 SLC16A11 0.015 −0.004 0.170

SFRS12 0.005 0.007 0.290 ALDH3A1 0.002 0.021 0.657

C5orf32 0.019 −0.029 0.560 FLJ44815 0.019 −0.005 0.210

ZNF346 0.001 −0.024 0.553 TANC2 0.003 −0.001 0.187

LOC100128901 −0.069 0.006 0.627 PDE6G −0.056 −0.012 0.377

OGDH 0.123 0.038 0.777 C19orf6 0.013 0.048 0.577

NSUN5 0.035 −0.014 0.660 TMEM146 −0.001 −0.063 0.550

PPP1R3A −0.034 −0.041 0.453 STX10 4E-04 0.015 0.333

MEST −2E-04 −3E-04 0.197 RLN3 0.024 −0.034 0.603

NOM1 0.029 −0.001 0.630 CYP4F11 0.018 0.005 0.127

FLJ41200 0.013 0.005 0.333 LOC728326 0.048 −0.040 0.547

LRRC19 −0.015 −0.040 0.480 ZNF585A 0.028 0.082 0.720

CCIN 0.006 −0.004 0.437 SUPT5H 0.020 −0.014 0.233

LOC100130911 0.004 0.024 0.467 FLJ10490 0.004 2E-04 0.327

PTCH1 0.004 −1E-04 0.300 ZNF331 0.027 0.003 0.330

DFNB31 0.057 −0.008 0.710 BACE2 −0.116 −0.074 0.940

OR52D1 0.023 −0.017 0.490 KRTAP10-12 0.002 0.003 0.233

Table 2 Overlap of selected genes between PMLMM and
PLMM

PMLMM PLMM* PLMM†

PMLMM 64 24 16

PLMM1 40 0

PLMM2 29

*PLMM on SBP.

†PLMM on DBP.
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