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Abstract

Most association studies focus on disease risk, with less attention paid to disease progression or severity. These
phenotypes require longitudinal data. This paper presents a new method for analyzing longitudinal data to map
genes in both population-based and family-based studies. Using simulated systolic blood pressure measurements
obtained from Genetic Analysis Workshop 18, we cluster the phenotype data into trajectory subgroups. We then
use the Bayesian posterior probability of being in the high subgroup as a quantitative trait in an association
analysis with genotype data. This method maintains high power (>80%) in locating genes known to affect the
simulated phenotype for most specified significance levels (a). We believe that this method can be useful to aid in
the discovery of genes that affect severity or progression of disease.

Background
Current association studies focus primarily on disease
susceptibility, searching for correlations between genetic
variants and disease phenotypes. Studies looking for
association with the severity or progression of a disease
have been less frequent. This may be partially because
these phenotypes require multiple data points across
time, which require more time and money to collect
properly. When longitudinal data are collected, however,
studies show they can be used to accurately map genes.
One example involves the progression of spine curvature
in scoliosis [1].
Historically, biological studies have been restricted in

their use of longitudinal phenotypes. Breakthroughs in
the field of growth mixture models, such as random
effects modeling [2], have allowed geneticists to begin to
analyze longitudinal data more effectively. The result
has been a substantial increase in the number of new
studies that use these growth mixture models to detect
genes responsible for growth or progression trajectories
[3]. One of the particular benefits of growth mixture
models is their ability to classify heterogeneous data
into distinct trajectory subgroups or to identify smaller

groups within a larger phenotype group. The probability
of an individual belonging to a particular subgroup,
called the Bayesian posterior probability (BPP), can be
calculated and used in association analyses. This is evi-
denced by Kerner and Muthen [4], who classified
patients into phenotype subgroups and performed asso-
ciation tests on subgroup membership and single-
nucleotide polymorphisms (SNPs).
In this study, we present a novel method of mapping

genes using longitudinal data that were obtained from
Genetic Analysis Workshop 18 (GAW18). Our disease of
interest is hypertension, and we use the simulated systolic
blood pressure (SBP) values as our phenotype. We per-
formed a population-based study using unrelated indivi-
duals and a family-based study using extended pedigrees.
Our approach involved assigning individuals into trajec-
tory subgroups and testing for association with SNPs
using the BPP of being in the clinically relevant subgroup
as a phenotype. Because hypertension is the disease of
interest in this study, we define the subgroup with the
highest SBP as the clinically relevant group. Power for
given significance levels was then calculated on genes
determined by GAW18 to affect the simulated SBP
phenotype.
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Methods
Replicate set creation and analysis of longitudinal data
Both phenotype and genotype data were provided by
GAW18. We used the simulated SBP values as our phe-
notype, which contained SBP values at 3 time points for
850 individuals. GAW18 created 200 phenotype files (to
serve as replicates), each containing the same 850 indivi-
duals with different SBP values at each time point. The
analyses were performed on 2 studies, one was popula-
tion-based and the other family-based. Genotype data
included both sequenced and imputed data free of men-
delian errors. The family-based study used related indivi-
duals from 20 extended pedigrees. The population-based
study used 157 individuals extracted from the pedigrees
determined to be genetically unrelated by GAW18. Three
time-varying covariates (age, hypertension medication,
smoking status) and 1 time-independent covariate (sex)
were used. We performed 2 full analyses on each study, 1
with covariates and 1 without covariates. Thus we had 4
discrete analyses: population-based with covariates,
population-based without covariates, family-based with
covariates, and family-based without covariates. For each
of the studies, we selected a set of 3 replicates by sam-
pling without replacement from the pool of 200 simu-
lated SBP phenotypes created by GAW18. The 3
replicates in a set represent 1 discovery data set and 2
confirmatory data sets. This was repeated 100 times,
creating a total of 100 discovery sets and 200 confirma-
tory sets.
The replicates were then analyzed via SAS PROC

TRAJ, which uses mixture modeling to assign longitudi-
nal data into subgroups [5]. Each replicate was evaluated
using 6 different models (k). Each model generated a
different number of subgroup trajectories, where k =
1,...,6. Thus, the 1-subgroup model generated a single
group while the 6-subgroup model created 6 subgroups
from the data. SAS also allows for the specification of
the polynomial order of each subgroup trajectory. The
initial models used cubic polynomials for all subgroups.
Outputs of the initial runs provided a p value for each
polynomial coefficient. The order of the polynomials in
each subgroup was adjusted to that of the highest order
polynomials that were still significant at the 5% level in
the first run. The analyses were repeated for a second
and final run. For the analyses using covariates, the cov-
ariates were introduced into the models at this point.
We then determined the optimum model (ie, the correct
number of subgroups) to be the model with the highest
Bayesian information criterion (BIC).
With the optimum model selected, we obtained the

BPP that an individual belongs to a particular subgroup.
For this study, we determined that the clinically relevant
group was the subgroup with the highest value at the last
time point predicted by the corresponding polynomial.

This correlates with individuals with the most severe
hypertension. Thus, we define the highest subgroup as
the subgroup with the highest SBP at the final time
point. The BPP of each individual belonging to this sub-
group was used in the association analyses. We note that
by choosing the clinically relevant group based on the
highest fitted value at the final time point we always get
the group that contains individuals with the highest SBP
values, regardless of the total number of subgroups deter-
mined by the BIC. We also note that clinical relevance is
a function of the disease of interest and that the method
can be modified to look at any subgroup.

Association analyses and power calculations
We performed association analyses using the BPPs as a
quantitative trait. The population-based data were ana-
lyzed via PLINK’s Wald test (assoc command) [6]. We
used the false discovery rate as implemented in PLINK to
determine overall significance. Association was calculated
for the family-based analyses through transmission dise-
quilibrium test (TDT). Two distinct programs were used
for TDT calculations. One was PLINK’s QFAM proce-
dure, which uses linear regression to fit genotypes to phe-
notypes and corrects for family structure via permutation
for quantitative phenotypes [6]. The second was TDT-
HET, an expanded TDT statistic that incorporates locus
heterogeneity in families [7]. These 2 programs use per-
mutation to correct for multiple testing. Because TDT-
HET requires dichotomous phenotypes, the BPPs were
converted to binary for this particular program. This
gave us the opportunity to see whether power was lost in
the conversion of quantitative phenotypes to dichoto-
mous phenotypes. We converted the estimated posterior
probabilities that were above 0.5 to 1 and those below 0.5
to 0 because our BPPs had a bimodal distribution regard-
less of the total number of subgroups estimated. The
composition of the fast group remained the same regard-
less of whether the BPPs were dichotomized or not. Time
constraints caused by the permutation tests necessitated
that the family analyses be run only on the region of
interest. For the population study, analyses were run on
the region of interest and several surrounding regions on
the same chromosome.
Power calculations were then performed on the top 15

genes affecting the simulated SBP phenotype. Two types
of power were calculated: per-gene power and total
power. Per gene power was calculated for each of the 15
gene regions on a binary, or YES/NO, scale. To consti-
tute a YES, all 3 replicates in a replicate set needed at
least 1 marker within a given gene with a p value in the
top x% (population-based) or below a given threshold, a
(family-based). All other scenarios were considered NO.
For the population-based data, x% was defined as the top
1%, 5%, and 10%. For the family data, a was defined as
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SNPs with p values at or below 0.1%, 1%, and 5%. We
also estimated total power, which was defined as the
average of the per-gene power and is intended as a
cumulative assessment of the method. T tests were per-
formed at each a level between the noncovariate and
covariate analyses to determine whether the addition of
covariates was significant. We also performed T tests
between corresponding PLINK and TDT-HET to deter-
mine whether mean power (per gene and total) of one
method was significantly higher than the other. In addi-
tion to the gene regions, we applied our method to 3
“null” regions of varying size. A null region was defined
as a region not containing any of the simulated functional
loci associated with SBP and was used to estimate our
method’s type I error rate. Figure 1 details the steps
involved in our method.

Results
Model analysis
For the population-based studies without covariates, the
average number of subgroups (k) ranged from 3 to 6,
mean: 4.78, median: 5, mode: 4. The fast subgroup had
an average proportion of 8.89% individuals. When covari-
ates were added to the study, the range shifted from 2 to
5, mean: 3.05, median and mode: 3. The average propor-
tion of individuals increased significantly, to 40.52% (see
Discussion). We saw a similar trend in the family studies.
Without covariates, k ranged from 3 to 5 with mean:
4.22, median and mode: 4. The average proportion of
individuals in the fast group was 8.98%. When covariates
were included, the range expanded from 2 to 5 with

mean: 4.18, median and mode: 4. The average proportion
of individuals in the fast group increased to 36.61%.
Thus, in both cases, covariates significantly increased the
number of individuals within the fast group.
The BPPs in both the population-based and family-

based studies had a bimodal distribution. Because our
association analysis is regression based, we performed a
Box-Cox transformation to normalize the data. We found
there was no statistical difference between results using
the original data or the transformed data.

Total power and per-gene power
For the population-based study, we observed total power
above 80% at 5% and 10% significance levels. Although
power was slightly higher for the covariate analysis,
mean power differences were not statistically significant.
Observed total power was less than 50% for both data
sets at the 1% level. The null regions maintained proper
type I error levels. For the family-based study, greater
than 80% power was observed using PLINK regardless
of covariate inclusion. Total power was less than 50% at
both a = 0.1% and a = 1%. Inclusion of covariates did
not significant change mean total power at any a level.
TDT-HET produced similar results, although slightly
higher, than PLINK. T tests comparing TDT-HET and
PLINK were significant at a = 0.1% but not at a = 1%
or a = 5%. The null regions maintained proper type I
error levels.
We also calculated power for each of the top 15 genes

affecting SBP (per-gene power). The population-based
analyses showed that 12 and 11 genes had greater than

Figure 1 Flowchart of overall method and power calculation. A. Flowchart detailing the overall method. B. Flowchart detailing the
calculation of power.
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80% power at the 5% and 10% levels, respectively. Only
a single gene had greater than 80% power at the 1%
levels. We note that this gene was MAP4, the top gene
affecting the SBP phenotype, accounting for more than
6% of the total variance. Covariates significantly
increased power in 5 genes, including MAP4 and NFR1.
Figure 2A shows the results for MAP4, along with the
results of a null region of comparable size. Per-gene
power was also calculated for the family-based analyses.
Both PLINK and TDT-HET produced results with 11 of
the 15 genes having power above 85% at a = 5% for the
noncovariate analyses. Adding covariates increased
power to above 90% for 4 genes, including MAP4. No
statistical difference using T tests was observed between
the TDT-HET results and the PLINK results. Figure 2B
shows the family results.

Discussion
Results of our analyses suggest that our method of group-
ing longitudinal phenotypes into subgroups and using the
BPP as a quantitative trait is a robust method for finding
association with SNPs in gene regions. We were able to
identify genes affecting the SBP phenotype with high
power in both family-based and population-based stu-
dies. We also observed high per-gene power when using
covariates. Our phenotype of interest was hypertension.
For this reason, we used the highest group as our clini-
cally relevant group. However, this choice is flexible and
any subgroup could be used as clinically relevant. For
example, researchers involved with scoliosis might also
be interested in the fastest progression group. If a pheno-
type like renal failure was being investigated, though,
researchers might be interested in the fastest decreasing
renal function group.
One interesting finding is the effect of covariates on

the correct number of subgroups. Covariate inclusion
increased the proportion of individuals in the fast group

in both studies. Mathematically, this occurred because
the covariate analyses tended to have more 2 and 3
subgroup models selected as compared with the nonco-
variate analyses that identified a larger number of sub-
groups. That could mean some of the subgroups in the
noncovariate analyses are not distinct subgroups, but
covariates helped to identify and collapse them.
Another interesting finding was that no power was

lost in the conversion of quantitative traits to dichoto-
mous traits for TDT-HET. In fact, power was often
gained. We believe this is a result of the bimodal nature
of the BPP.
We note that our power at 1% level was less than

50%. We believe that this was caused by our low sample
size, given that the effect size of some of the associated
genes was known to be small for these data. This is evi-
dent in MAP4, which accounted for 6% of the total SBP
variance. We estimated 80% power using our method
even at the 1% level.
Finally, we wanted to compare the performance of our

method to methods proven to identify SNP signals asso-
ciated with longitudinal phenotypes. We chose to com-
pare to the functional genome-wide association studies
(fGWAS) software [8]. We found that the results
between our method and fGWAS were statistically iden-
tical (results not shown). However, we note that it was
only an exploratory study; the scope of this study was
not a full model comparison.

Conclusions
Our method for analyzing longitudinal data produced
high power for identification of association between BPP
of group membership and SNPs in genes known to affect
SBP. The method’s power was high (greater than 80%) in
multiple scenarios, including different genotype data and
sample size. The flexible nature of this approach allows it
to be used in a variety of tests, including exploratory

Figure 2 Per gene power graphs for MAP4.A. Graph of power using population-based analyses. B. Graph of power using family-based
analyses.
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analysis of the entire genome or confirmation analysis on
a given region. Significant increases in power with covari-
ate inclusion also show our method’s ability to detect
interactions between genetic and environmental factors.
This provides the prospective researcher the potential to
effectively analyze environmental covariates during an
association study with longitudinal data. Based on our
power results, we believe this method can be an effective
and efficient approach to analyzing longitudinal data
from a variety of different data sets and study designs.
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