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Abstract

The behavior of a gene can be dynamic; thus, if longitudinal data are available, it is important that we study the
dynamic effects of genes on a trait over time. The effect of a haplotype can be expressed by time-varying
coefficients. In this paper, we use the natural cubic B-spline to express these coefficients that capture the trends of
the effects of haplotypes, some of which may be rare, over time; that is, at different ages. More specifically, to
capture disease-associated common and rare haplotypes and environmental factors for data from unrelated
individuals, we developed a method of time-varying coefficients that uses the logistic Bayesian LASSO
methodology and B-spline by setting proper prior distributions. Haplotype and environmental effect coefficients
are obtained by using Markov chain Monte Carlo methods. We applied the method to analyze the MAP4 gene on
chromosome 3 and have identified several haplotypes that are associated with hypertension with varying effect
sizes in the range of 55 to 85 years of age.

Background
The Genetic Analysis Workshop 18 (GAW18) real data
are family-based, consisting of cleaned single-nucleotide
polymorphism (SNP) genotypes, sex, age at the time of
examination, hypertension status, and smoking for up to
4 time points. Data on 157 unrelated individuals are also
extracted from the families and made available for analysis.
Previous studies have examined more than 50 genes for
their associations with hypertension, and the number is
growing [1]. Moreover, hypertension is also considered to
be age-dependent; the chance of being hypertensive rises
with age and the risk after midlife (eg, more than 50 years
of age) is considerable [2]. Hence, in this paper, we aim to
identify both genetic and environmental factors that are
associated with high blood pressure, with the effects
potentially varying at different ages.
This contribution concerns a haplotype-based method

because haplotype procedures can be more powerful
than a single SNP analysis if there are multiple causal

variants interacting in cis-fashion, or if only SNPs in link-
age disequilibrium with causal SNPs are genotyped. Rare
haplotypes can result even when only common SNPs are
considered. Thus, novel methods are needed not only to
take the varying effects of haplotypes and environmental
factors into account, but also to deal with the anomaly of
rare variants. The particular environmental factor of
interest is smoking, as it has been shown to be a potential
risk factor for hypertension [3]; thus, we include smoking
in our model in addition to sex and age.
Because the GAW18 data are collected prospectively,

we first formulate a prospective likelihood. We then bor-
row the idea from the logistic Bayesian LASSO (LBL)
approach to penalize parameters (regression coefficients)
by setting up proper prior distributions [4]. We chose to
follow the LBL idea because it has been shown to be cap-
able of detecting rare associated haplotypes, albeit under
a retrospective setting with fixed, rather than varying,
coefficients. As such, the LBL time-varying coefficient
(LBL-tvc) method developed in this paper can be consid-
ered as a generalization of the original LBL. The haplo-
type and environmental effect coefficients are obtained
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by using Markov chain Monte Carlo (MCMC) methods.
By using the proper percentiles of the sampled para-
meters, we can also construct hypothesis tests to deter-
mine whether a haplotype or an environmental covariate
is associated with the disease.

Methods
Data
We considered data from 153 unrelated individuals.
Blood pressure measurements, age, and smoking status
were available for up to 4 time points. Specifically, 40,
41, 45, and 31 individuals had measurements at 1, 2, 3,
and 4 time points, respectively. Binary hypertension sta-
tus is as defined in the original study: An individual is
labeled as hypertensive if the systolic blood pressure is
greater than 140 mm Hg, or the diastolic blood pressure
is greater than 90 mm Hg, or if the individual is on anti-
hypertensive medication at the time of examination.
Individuals with incomplete genotype data for the SNPs
under consideration were excluded from the analysis.
However, individuals with measurements at less than 4
time points were all included because such individuals
can be accommodated by our model (see below).

Selection of 4 regions in the MAP4 gene
To provide a focused analysis, we only considered the
MAP4 gene, which was associated with hypertension in
previous studies. First we carried out preliminary analysis
to find regions that provide at least weak evidence of asso-
ciation in MAP4 by single SNP analysis to reduce the
computational burden of LBL-tvc. Specifically, we per-
formed a logistic regression analysis for each SNP in the
MAP4 gene and included age, sex, and smoking in the
model as follows:

logit(p(Y1 = 1|covariates)) = β0 + β1SNPk + β2SMOKE1 + β3AGE1 + β4SEX (1)

where Y1, SMOKE1, AGE1, and SEX are the hyperten-
sion status (1 if hypertension), smoking status, age, and
sex at the first examination, respectively, and SNPk is the
genotype at the kth SNP. A chi-square analysis of variance
(ANOVA) test is performed and the p value is recorded.
We choose SNPs corresponding to the 4 smallest

p values as the anchors of our 4 regions for further ana-
lysis. Each chosen SNP and its 4 adjacent SNPs (2 on
each side) form a 5-SNP-haplotype block. We used the
Hapassoc software (http://cran.r-project.org/web/
packages/hapassoc/index.html) to estimate haplotype
frequencies, which were then used as the starting values
for our MCMC analysis.

Prospective likelihood formulation
Let Yi,j be the affection status and Ei,j the smoking status
of the ith individual at the jth examination (i = 1,2,..., n;
j = 1,2,3, ji ≤ 4), where n is the number of individuals

with observed data. Further, let Zi be the phased (miss-
ing) haplotype pair and Si the sex of the ith individual.
The probability of a certain haplotype pair can be writ-
ten as

P(Z|λ) = az(λ) = P(Z = zk/zk′ |λ) = δkk′dfk + (2 − δkk′)(1 − d)fkfk′ , (2)

where f1, . . . , fm denote the m haplotype frequencies,
δkk′ is the indicator function that equals to 1 if k = k′,
and d ∈ (−1,1) is the inbreeding coefficient that can
capture the excess or reduction of homozygosity [5].
When d = 0, Hardy-Weinberg equilibrium holds. The
vector l is the collection of all parameters. Suppose the
disease statuses Yi,j are independent, conditional on the
mean effect at time point j. In addition, assume that
smoking status and haplotype are independent. Let Ψ be
the collection of haplotype, smoking, sex, and age effect
plus the parameters associated with haplotype frequen-
cies, from which the mean effect can be constructed
(see B-splines section). Then, the complete data pro-
spective likelihood can be written as

Lc(�) =

⎢⎢⎢⎣∏
i,j

P(Yi,j|Ei,j,Zi, Si,�)

⎥⎥⎥⎦
⎢⎢⎢⎣∏

i

P(Ei,1,�)
∏
j≥2

P(Ei,j|Ei,j−1,�)

⎥⎥⎥⎦ ∏
i

P(Zi|�)
∏
i

P(Si|�). (3)

Let θz,E = P(Y = 1|Z,E, S)/P(Y = 0|Z,E, S). A logistic
regression model leads to log(θZ,E) = β0 + βh(t)Xh + βEXE(t) + βE,hXE,h + βsXs,

where βh(t) is the vector of haplotype effects at age t; βE is
the smoking effect; βE,h is the interaction effect; and βs is
the sex effect. Furthermore, Xh is the design vector that
gives the number of copies of each haplotype in Z; XE(t)
is the smoking status at age t (age at examination); XE,h(t)
is the interaction of smoking and haplotype; and Xs is the
sex.

B-splines
We consider the natural cubic B-spline to express the

haplotype effects over time. We write βh(t) =
L+4∑
l=4

βhlBl(t),

where βhl(t) is the natural cubic B-spline basis function,
and L is the number of interior knots. Because the age
range is from 22 to 97, we let L = 2 and choose interior
knots to be (40, 60) and the boundary knots to be (20,
100). We then rewrite the logistic model as

log(θZ,E) = β0

L+4∑
l=1

βhlBl(t)Xh + βEXE(t) + βE,hXE,h(t) + βsXs = β0 + β̃X̃(t), (4)

where β̃ = (βhl,βE,βE,h,βs), X̃(t) = (Bl(t)Xh,XE,h(t),Xs).
The likelihood function is now completely specified in
terms of the parameter vector Ψ.

MCMC estimation of parameters
We follow the LBL [4] methodology for estimating the
parameters. A double exponential distribution with
mean 0 is set to be the prior distribution for each
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parameter in β̃, with the intensity parameter set to be
gamma, to control shrinkage. Uninformative priors are
set for haplotype frequencies and inbreeding coefficient.
We use MCMC methods to sample the parameters
from the appropriate posterior distributions. If it is fea-
sible to sample directly from the conditional distribution
of a parameter, then we use the Gibbs sampler; other-
wise, we use the Metropolis-Hastings algorithm with
appropriate proposal distribution.

Results
LBL-tvc was applied to each of the four 5-SNP-haplo-
type blocks/regions in the MAP4 gene. For each region,
at least 1 haplotype shows significant effect at the age
range of 55 to 85 years (Table 1). It is interesting to see
that the effect over time is consistent over all 4 regions.
Specifically, the associated haplotypes do not confer risk
until an individual turns 55 to 60 years of age. The risk
continues to rise and reaches the maximum at an age of
70 to 75 years. To see this more clearly, we have plotted
the haplotype effects over time (Figure 1) for the asso-
ciated haplotype GGTCC in region 2, which spans the
region from 47964587 to 47985074 base pairs (bp) on
chromosome 3, covering 2 introns and 1 exon. The hap-
lotype appears to be protective at a young age and gra-
dually becomes a risk haplotype when an individual
reaches 60 years of age. The effect is the strongest at

65 to 70 years of age, with an estimated odds ratio of
2.52, indicating a fairly strong association. The effect
appears to diminish at an older age. However, note that
the number of subjects in the young (25 to 40 years)
and the old (90 to 95 years) categories are very small,
and thus the corresponding results in these categories
should be interpreted with great caution. This phenom-
enon also occurs in the other haplotypes. Also note that
for the identified haplotype CGAGG in region 47911271
to 47915368 bp, which covers 3 exons and 3 introns,
the estimated haplotype frequency is less than 0.05, con-
sidered to be a rare haplotype. The effect of this haplo-
type would have been overlooked had one used a
pooling method by combining this haplotype with other
rare haplotypes or with a common similar haplotype [4].
Although sex and smoking are also included in the
model, neither effect is deemed to be significant accord-
ing to our model.

Discussion
The longitudinal nature of the GAW18 data calls for
methodology that is able to take the correlated measure-
ments into account. Furthermore, there is a great deal of
treasures that are yet to be mined from the common
SNP data collected in genome-wide association studies.
To this end, we have proposed LBL-tvc, a logistic regres-
sion model, to handle the correlated measurements over

Table 1 Significant haplotypes and their effect estimates in 4 regions of the MAP4 gene on chromosome 3

47911271-
47915368(EIEIEI*)

47964587-47985074(IEI*) 47998716-48005285(I*) 48022323-48037328(I*)

Hap CGACG† TGGCG GGTCC TTCG ATTTG

Age OR‡ L‡ U‡ OR L U OR L U OR L U OR L U

25 0.72 0.05 6.56 0.19 0.01 1.46 0.13 0.01 0.86 0.14 0.01 0.90 0.16 0.01 0.99

30 0.59 0.04 4.22 0.15 0.00 1.04 0.10 0.01 0.61 0.11 0.01 0.63 0.13 0.01 0.70

35 0.55 0.07 2.77 0.19 0.02 0.83 0.14 0.02 0.52 0.14 0.02 0.51 0.16 0.03 0.57

40 0.58 0.10 2.21 0.30 0.08 0.84 0.26 0.10 0.57 0.26 0.10 0.55 0.27 0.11 0.59

45 0.69 0.14 2.35 0.54 0.23 1.17 0.51 0.28 0.89 0.50 0.28 0.87 0.49 0.27 0.88

50 0.92 0.23 2.96 0.96 0.48 1.90 0.93 0.55 1.55 0.94 0.56 1.56 0.89 0.53 1.50

55 1.31 0.39 4.66 1.59 0.85 3.05 1.53 0.94 2.55 1.62 1.01 2.67 1.50 0.91 2.49

60 1.97 0.63 7.91 2.29 1.19 4.49 2.15 1.26 3.79 2.38 1.41 4.16 2.17 1.27 3.81

65 2.99 0.92 13.3 2.69 1.39 5.36 2.52 1.42 4.55 2.85 1.64 5.10 2.59 1.48 4.68

70 4.40 1.13 25.4 2.67 1.42 5.19 2.52 1.43 4.55 2.84 1.65 5.02 2.63 1.52 4.68

75 5.98 1.23 53.8 2.32 1.25 4.49 2.26 1.26 4.11 2.50 1.44 4.47 2.35 1.36 4.20

80 7.14 1.23 98.7 1.87 0.98 3.68 1.88 1.01 3.55 2.04 1.11 3.81 1.95 1.09 3.69

85 7.15 1.09 120 1.46 0.70 3.02 1.53 0.76 3.12 1.69 0.80 3.32 1.57 0.80 3.27

90 5.71 0.77 103 1.15 0.45 2.88 1.27 0.54 3.08 1.30 0.55 3.17 1.28 0.54 3.23

95 3.47 0.31 82.1 0.96 0.23 3.69 1.12 0.31 4.38 1.12 0.32 4.28 1.11 0.31 4.29

*In each of the 5-SNP-haplotype regions in the MAP4 gene, the exons (E) and introns (I) covered by the region are indicated. For example, the region from
47911271 to 47915368 covers 3 exons and 3 introns starting with an exon, indicating that the first SNP is in an exon and the last SNP is in an intron.

†This is a rare haplotype as the estimated frequency is less than 0.05.
‡OR (odds ratio), L (lower bound of 95% credible interval [CI]), and U (upper bound of 95% CI) are presented for ages from 25 to 95 years, in an increment of 5.
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4 time points. LBL-tvc considers the effects of haplotypes,
which can be rare even if all the underlying SNPs are
common. Application of LBL-tvc to the MAP4 gene
yielded results that are consistent in all 4 regions of the
MAP4 gene and appear to be useful. As one may expect,
the effect of an associated haplotype would confer risk
only when an individual reaches the age of 55 to 60
years, when hypertension typically strikes. The results
further demonstrate the utility of the methodology for its
ability to detect the effects of rare associated haplotypes.
To evaluate the performance of LBL-tvc, we carried out

a preliminary simulation study with the effect mimicking
that of what we see in the real data. More specifically, the
simulation model considers a 5-SNP-haplotype block in
which there are 5 common haplotypes and 2 rare haplo-
types, with 1 of each type being associated with the hyper-
tensive status. The strength of association across the age
range of 20 to 90 years varies in a fashion similar to the
pattern in the fitted real data. We also entertained an
interaction effect between smoking and the common risk
haplotype. Affection and smoking status are simulated at 4
time points for 250 individuals. The results, based on 100
replications, show that the type I error is well controlled,
and there is overwhelming power (>90%) for detecting the
common haplotype effects in the mid-age range. The
power is much lower (approximately 50%), although still
reasonable, for the rare haplotype effect. The power for
detecting the haplotype-smoking interaction is also very
high (>90%); we note, however, that the power will likely
be much smaller had the interaction been with a rare

haplotype. Overall, the simulation results are encouraging
and to some extent validate our findings in the real data.
Nevertheless, further investigation is needed to fully evalu-
ate the properties of the method.
Because MCMC is applied for estimating the para-

meters, the procedure is computationally intensive. For
example, analysis of each simulation replicate on a 5-
SNP-haplotype block with 250 individuals and data on 4
time points as described above took about 35 minutes to
complete. Therefore, our method should be primarily
used for follow-up studies in interesting gene/regions. In
our real data analysis, we simply use a prescreening pro-
cedure to find single SNP signals to form haplotypes with
4 neighboring SNPs. This construction of haplotype
block is somewhat arbitrary. An alternative would be to
select additional SNPs based on linkage disequilibrium
plots.
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Figure 1 Effect of Haplotype GGTCC (47964587 to 47985074
bp) over the specified age range. The solid line is the odds ratio
(OR) of the effects and the 2 red dotted lines are upper and lower
bounds of 95% credible intervals.
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