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Abstract

Compared with microarray-based genotyping, next-generation whole genome sequencing (WGS) studies have the
strength to provide greater information for the identification of rare variants, which likely account for a significant
portion of missing heritability of common human diseases. In WGS, family-based studies are important because
they are likely enriched for rare disease variants that segregate with the disease in relatives. We propose a
multilevel model to detect disease variants using family-based WGS data with longitudinal measures. This model
incorporates the correlation structure from family pedigrees and that from repeated measures. The iterative
generalized least squares algorithm was applied to estimation of parameters and test of associations. The model
was applied to the data of Genetic Analysis Workshop 18 and compared with existing linear mixed-effect models.
The multilevel model shows higher power at practical p-value levels and a better type I error control than linear
mixed-effect model. Both multilevel and linear mixed-effect models, which use the longitudinal repeated
information, have higher power than the methods that only use data collected at one time point.

Background
Whole genome sequencing (WGS) provides comprehen-
sive collection of genetic variations and thus is promising
in discovering novel inheritable factors for both Mendelian
and complex traits. Two data properties distinguish WGS
from microarray-based genome-wide association study
(GWAS). First, WGS data contain rare causal mutations
that could have large allelic effect. However, the statistical
association for such rare variants is weak at population
level because of small allele frequency [1]; therefore, popu-
lation-based case-control study, which is commonly
applied in GWAS, is less powerful for WGS. Second,
family design is attractive and commonly applied in WGS
studies. Causal rare variants are likely enriched through
cotransmission in families. Moreover, pedigree structures
allow statistical imputation of genotypes without experi-
mental cost [2]. Additionally, family-based data analyses
automatically control for population stratification and are
potentially able to incorporate helpful genetic information

on phase, effects of parental origin, cotransmission of var-
iants, and so on[3].
Detection of disease variants can also be facilitated by

trajectory information on individual changes over time.
Longitudinal genetic studies enable a close investigation
of both genetic factors that lead to a disease and envir-
onmental determinants that modulate the subsequent
progression of the disease. In WGS, it is important to
develop powerful methods that accommodate both
within-family correlation structure and correlation
among repeated measures. Here we extend a multilevel
model [4,5] to WGS longitudinal family data, which
simultaneously accounts for familial and time-series cor-
relations. The implementation is based on the iterative
generalized least squares (IGLS) algorithm [6,7], which
allows conclusions to be drawn about both genetic and
environmental effects while controlling the complex corre-
lation structure. We assessed the multilevel model by com-
paring with the linear mixed-effects (LME) models using
“dose” genotypes on chromosome 3 and the 200 simulation
replicates of longitudinal response and covariates provide
by Genetic Analysis Workshop 18 (GAW18) [8].* Correspondence: zheyangwu@wpi.edu
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Methods
Method 1: LME model
Linear mixed-effects models offer a natural approach to
deal with correlation structures among observations. For
longitudinal family data, we can define an LME model:

yijk = x′
ijkβ + z′ijkγk + εijk, (1)

where yijk is response of the ith repeated measure of
the jth individual in the kth family, where i = 1, . . . ,njk,
j = 1, . . . ,mk, and k = 1, . . . ,K, with njk being the num-
ber of measures for individual j in family k and mk

being the number of individuals in family k; xijk is a
covariate vector (including genotype) for fixed effects
zijk. zijk is a covariate vector for random effects γk,
where γk := (γ1k . . . γmkk)

′ ∼ N(0,Dk), Dk the covariance
matrix among individuals in family k (e.g., the kinship
matrix). Also, jk := (1jk . . . njkjk) ∼ N(0,�jk), where �jk is
the covariance matrix among the repeated measures
for individual j in family k. We assume γk and εjk are
independent between each other and among them-
selves for all j and k. To implement the LME model,
we applied the following R package:
GWAF: R package GWAF was design for genome-wide

analysis for family data [9]. It accounts for the pedigree
correlation structure by kinship matrix. However, it does
not handle longitudinal repeated measures. So this
method was used to represent the cross-sectional analysis
for family data and was compared with other family-data
analysis incorporating longitudinal information.
Lmekin: R function lmekin in package coxme [10] was

applied to account for both the family correlation struc-
ture and the correlation structure of the longitudinal
repeated measures. Specifically, we set the model that
includes a random intercept at individual level to account
for the correlation of repeated measures assuming com-
pound symmetry structure, a random intercept at family
level to account for the clustering effect among family
members. Furthermore, the kinship matrix was incorpo-
rated through its varlist option to account for the kinship
correlation among family members.

Method 2: Multi-level model
We extend the classic multi-level model [4,5,11] to analyze
WGS family data with longitudinal repeated measures.
The response for the ith measure (level 1) of the jth indivi-
dual (level 2) in the kth family (level 3) can be written as

yijk = xijk′β + uk + gjk + vij + eijk, (2)

where xijk
′ and β are similarly defined in (1). The rest

random-effect terms on the right side of the equation
are normal distributed with mean zero and variance
characterizing the correlation structure among

observations. Denote the response vector y = (yijk). We
have y ∼ N(xβ ,V), where

Var
(
y
)
= V = Aσ 2

u + Bσ 2
g + Cσ 2

v + Iσ 2
e . (3)

The first random term uk characterizes the clustering
effects at the family and individual levels. Specifically,
A = ⊕k(Jk ⊗ J∗), where Jk is a matrix of 1’s with dimen-
sion being the size of kth family, J∗ is a matrix of 1’s
with dimension being the number of repeated measures
per individual. ⊕ denotes the matrix direct sum, and ⊗
denotes the Kronecker product. The second random
term gjk indicates the genetic correlation (kinship coeffi-
cients) among individuals in the kth family. Mathemati-
cally, B = ⊕k(Dk ⊗ J∗), where Dk is the kinship matrix.
The third random term vij indicates the correlation
among repeated measures in the jth individual:
C = ⊕k(Ik ⊗ R), where Ik is an identity matrix with
dimension being the size of the kth family and, R is the
correlation matrix among repeated individuals. For
example, if we assume compound symmetry structure,
for three repeated measures,

R =

⎛
⎝1 ρ ρ

ρ 1 ρ

ρ ρ 1

⎞
⎠ =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ +

⎛
⎝0 1 1
1 0 1
1 1 0

⎞
⎠ ρ. (4)

So the term can be decomposed asCσ 2
v = C1σ

2
v + C2ρσ 2

v ,
such that the matrixes are all known and the parameters
can be estimated as described below. Certainly, more com-
plicated correlation structure can be modeled by a further
decomposition according to the number of covariance
parameters to be estimated. Finally, eijk is the independent
and identically distributed error term, and I is the identity
matrix for all observations.
For the inference of the multilevel model, the IGLS

algorithm [6,7] is applied. Let ỹ = y − Xβ. Note that

E
(
ỹỹ′

)
= V = Aσ 2

u + Bσ 2
g + C1σ

2
v + C2ρσ 2

v + Iσ 2
e . (5)

Step 1: Given β, estimate V by the least squares estimation
of variance [12]. Specifically, this is a procedure of fitting
regression model of response vector y∗ = vec

(
ỹỹ′

)
to the

design matrix X∗ = [vec (A) , vec (B) , vec (C1) , vec (C2) , vec(I)],
where vec (A) denotes the vectorization of the upper trian-
gular part of matrix A. So,

(
σ̂ 2
u , σ̂

2
g , σ̂

2
v , ρ̂σ 2

v , σ̂
2
e

)′
= (X∗′ (

V−1 ⊗ V−1)X∗)−1X∗′ (
V−1 ⊗ V−1) y∗ and ρ̂ = ρ̂σ 2

v /σ̂
2
v (6)

Step 2: Given V , estimate β by the weighed least
squares estimate:

β̂ = (x′V−1x)−1x′V−1y. (7)

The estimation procedure starts at an arbitrary β (e.g.,
obtained from a multiple regression fitting) and then
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iterates between steps 1 and 2 until convergence.
Because the IGLS estimate is equivalent to the
restricted maximal likelihood estimate [4], we can
apply a Z-test to calculate p-values for the elements in

β̂, which contains the fixed genetic effects. In particu-

lar, because Var
(
β̂
)
= (x′V−1x)−1, the Z-test statistic

for βj is Zj = β̂j/Var
(
β̂
)
jj
, and the two-tailed p-value is

pj = Pr(|N (0, 1)| >
∣∣Zj

∣∣). Certainly, this multilevel
model has the potential to be further extended to
incorporate a more complicated covariance structure
for more sophisticated modeling.

Results
For evaluating the methods, we used the “dose” geno-
type data of the 169 true single-nucleotide variants
(SNVs) on chromosome 3 that were associated with dia-
stolic blood pressure (DBP) in 200 simulation replicates.
These data contain 849 individuals in 20 families, and
the number of individuals in families is 21 to 74, with
the mean 42.45 and the median 36.5. Kinship matrixes
of these families were directly calculated based on the
pedigree information. The above models were fitted
with or without covariates: age, blood pressure medicine
status, and sex. For GWAF, which does not analyze
longitudinal data, we applied the DBP at the first time
point as the response. For lmekin and multilevel model,
we applied all three longitudinal repeated measures. The
knowledge of the true SNVs was only used for evaluat-
ing the power of these association tests, not for the data
analysis strategy.
First, we evaluated the type I error rate control for

these methods. Fitting the 169 DBP-related SNVs on
chromosome 3 to Q1, a null response provided by

GAW18 “to facilitate assessment of type I error,” we
plotted in Figure 1a the false-positive rates over a variety
of p-value cutoffs. It is clear that the type I error rate of
lmekin is highly inflated, and the type I error rates of
multilevel model and GWAF are closer to the expected
level around the diagonal line. The inflation is worse
when covariates are contained in the models (denoted
“covar”). We also studied the type I error rate through
permutation. Figure 1b shows the false-positive rates for
fitting the permuted genotype data of these SNVs to DBP
response, which retained the relationship between covari-
ates and DBP but destroyed the association between
SNVs and DBP. Now both lmekin and our multilevel
models control the type I error rate perfectly well. To
explain the puzzle, we checked the GAW18 “answers”
and found that Q1 was simulated as a quantitative trait
correlated among family members with heritability 0.68,
but the total heritability for DBP is only 0.317. This
means that Q1 values have stronger correlation than
DBP values do. The inflation of the type I error of lmekin
indicates that this LME model is less capable than our
multilevel model in accounting for the correlation among
individuals (cf. [13]).
We studied the power of detecting the 169 DBP-related

SNVs on chromosome 3. Based on the phenotype data in
the simulation replicate 1, Figure 1c shows the true posi-
tive rate of detecting these true SNVs over a variety of
p-value cutoffs. In general, the power of detecting true
SNVs is low at small or moderate p-values. This phenom-
enon indicates that the sample size is still relatively too
small to detect a large proportion of the weak genetic
effects simulated in the data. At the same time, longitudi-
nal methods (lmekin and multilevel models) are better
than the one-time-point model (GWAF); the latter does
not have much power except for the strongest SNVs. The

Figure 1 Type I error and power for detecting DBP-related. single-nucleotide variants (SNVs) on chromosome 3. Considering all 169 diastolic
blood pressure (DBP)-related SNVs on chromosome 3, the type I error rates were estimated by the false positive rates when Q1 was the null
response (a) and when the genotypes are permuted (b); the power was estimated by the true positive rate when DBP was the response (c). A
model with or without containing covariates (age, blood pressure medicine status, and sex) is denoted by its name with or without “covar”.
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lmekin and the multilevel models have similar perfor-
mance overall, but the multilevel model is better at the
region of relatively small p-values (e.g., p-value < 0.1) that
are of practical interest. For both lmekin and multilevel
models, there is no big difference between the models
with and without covariates. We also studied the power of
detecting specific SNVs by using the data of 200 simula-
tion replicates. For example, by the multilevel model with
covariates, the strongest SNV at location 48040283 always
got significant p-values from 1.8 × 10−31 to 3.09 × 10−9.

Discussion
In this work, our main focus was to see whether model-
ing longitudinal data could provide helpful information
to increase the power of detecting true SNVs when com-
pared with the methods for analyzing data at one time
point. Here we directly applied the original genotype data
into modeling and illustrated that the longitudinal
repeated observations were indeed helpful to detect DBP-
related genetic factors. However, many true SNVs are
rare variants, some of which could have big allelic effect
for specific individuals when the disease mutation pre-
sents. As a result of small minor allele frequency (MAF),
the association between such rare variants and their cor-
responding phenotypes is still weak at the population
level [1]. This may be one of the main reasons why the
overall power is low in detecting the majority of the cau-
sal or regulatory genetic factors. Various strategies of
rare-variant collapsing procedures [14,15] could be
applied to grouping and combining genotypes of rare var-
iants, which has potential to further increase the power.
The computational speed of the multilevel model is

comparable with the linear mixed-effects model estima-
tion by lmekin. Both models are computationally
demanding (e.g., ~10 minutes for our implementation of
multilevel model and 8 minutes for lmekin to process
one SNV on a MacBook Pro with 2.9-GHz Intel Core
i7). However, we observed that the convergence speed
of the iterative generalized least squares algorithm for
the multilevel model is relatively fast: the results usually
do not change much after two iterations. So, restricting
the number of iterations could potentially reduce com-
putational time. Further study on improving computa-
tion efficiency will be carried out in the near future.

Conclusions
We developed a multilevel model for fitting family-based
genotype data and repeated measures of covariates to
quantitative longitudinal response, which accounts for
correlations among individuals, nesting effects at the
family and individual levels, and the time series correla-
tions due to the repeated measures of covariates and
responses. Using the simulated data of GAW18, this
method showed more accurate type I error control than

the LME model by lmekin, which is likely the result of
better account for correlations among individuals. The
multilevel model also provided higher power at small p-
value cutoffs. At the same time, both lmekin and multi-
level model, which use the longitudinal information,
have higher power than GWAF, which only models data
at one time point.
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