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Abstract

Statistical genetic methods incorporating temporal variation allow for greater understanding of genetic architecture
and consistency of biological variation influencing development of complex diseases. This study proposes a
bivariate association method jointly testing association of two quantitative phenotypic measures from different
time points. Measured genotype association was analyzed for single-nucleotide polymorphisms (SNPs) for systolic
blood pressure (SBP) from the first and third visits using 200 simulated Genetic Analysis Workshop 18 (GAW18)
replicates. Bivariate association, in which the effect of an SNP on the mean trait values of the two phenotypes is
constrained to be equal for both measures and is included as a covariate in the analysis, was compared with a
bivariate analysis in which the effect of an SNP was estimated separately for the two measures and univariate
association analyses in 9 SNPs that explained greater than 0.001% SBP variance over all 200 GAW18 replicates.The
SNP 3_48040283 was significantly associated with SBP in all 200 replicates with the constrained bivariate method
providing increased signal over the unconstrained bivariate method. This method improved signal in all 9 SNPs
with simulated effects on SBP for nominal significance (p-value <0.05). However, this appears to be determined by
the effect size of the SNP on the phenotype. This bivariate association method applied to longitudinal data
improves genetic signal for quantitative traits when the effect size of the variant is moderate to large.

Background
Traditional analyses of genetic variants influencing com-
plex diseases focus on phenotypes and covariate mea-
surements from a single time point. However, the
majority of human epidemiologic studies collect informa-
tion from multiple measurements. This, coupled with the
knowledge that many quantitative phenotypes correlated
with complex disease change with age or environmental
confounders, suggests that inclusion of a temporal com-
ponent may allow for increased understanding of com-
plex diseases. Given the nature of these longitudinal data,
methods jointly using multiple time points when per-
forming association may have increased statistical power
over univariate association methods [1-6]. However,
although some statistical methods have been proposed
for the analysis of longitudinal data, few have been

successful in being adopted by the wider genetic epide-
miologic community because of the difficulty of imple-
menting them. One potential drawback to the utility of
these bivariate methods is the addition of a degree of
freedom as a result of the additional phenotype, thereby
potentially reducing statistical power to detect genetic
signals that do not vary with time or age.
We present a method for bivariate association using

longitudinal data from the same phenotype in families
using the Genetic Analysis Workshop 18 (GAW18)
simulated single-nucleotide polymorphism (SNP) data
for the phenotype systolic blood pressure (SBP) from vis-
its 1 and 3. We have previously applied this method to
the analysis of different phenotypic measures of heart
rate (echo- and electrocardiograms) in American Indian
participants of the Strong Heart Family Study [7] but
wish to test its efficacy in a simulated longitudinal data
set. To test this method, we first conducted association
using measured genotype analysis of all SNPs for SBP
from visits 1 and 3 using the GAW18 family data. We
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then conducted two bivariate analyses within the var-
iance-component framework using 20 SNPs known to
influence SBP from the GAW18 SNPs and 20 SNPs that
did not explain any of the SBP variance identified in our
association analysis. This work was done with knowledge
of the GAW18 simulating model.

Methods
Data description
The GAW18 data set contains 959 individuals from 20
extended Mexican American pedigrees from the Type 2
Diabetes Consortium. Each of the 200 simulated data
sets includes the following information for each indivi-
dual for three time periods along with gender: age, SBP,
diastolic blood pressure (DBP), hypertension status,
blood pressure medication status, and smoking [8].

Univariate association
Maximum likelihood methods, taking into account rela-
tionships among family members, were used to deter-
mine association for the phenotypes SBP at visit 1
(SBP_1) and visit 3 (SBP_3) independently in a polygenic
model available in the computer program Sequential Oli-
gogenic Linkage Analysis Routines (SOLAR) [9]. Covari-
ates included age, sex, and their interactions as well as
smoking for both visits 1 and 3. Variables were carried
forward to association models if associated with SBP_1
or SBP_3 at p-valuebelow0.05. Measured genotype analy-
sis was conducted for all available GAW18 polymorphic
variants in which the number of minor alleles is added to
the quantitative polygenic genetic model as a covariate to
assess the effect of the SNP on the mean of the trait
using the equation

p = μ + αs + βx + g + e, (1)

where s defines a variate for the ith SNP that takes the
value, 0, 1, and 2 for the marker genotypes AA, Aa, and
aa, respectively; a represents one-half the displacement
between homozygous marker means; b represents fixed-
effect regression coefficients for any measured covariates
x; and g and e are random effects representing residual
genetic effects and random environmental effects [10].
This model tests whether a is different from 0 using a
likelihood ratio test. Twice the difference in log-likeli-
hoods is distributed as a x2 random variable with 1
degree of freedom.

Bivariate association
We also applied maximum likelihood methods account-
ing for familial relationships in bivariate association ana-
lyses. This bivariate method investigates two related
phenotypes simultaneously, modeling genetic and envir-
onmental correlations between them [11]. Our proposed

method investigates the effect of an SNP on the mean
trait values of two longitudinal phenotypes i and j, con-
straining the displacement in trait means (a) with each
copy of the minor allele to be equal for both measures
using the equations

pi = μi + αisi + �βixi + gi + ei and (2)

pj = μj + αjsj + �βjxj + gj + ej, (3)

where a, bi, and bj are fixed-effect regression coeffi-
cients and g and e are modeled through random effects
with the bivariate model allowing for correlations
between gi and gj (rg) and between ei and ej (re). The dif-
ference between the log-likelihoods of a model in which
the SNP effect is estimated versus one in which it is con-
strained to zero is then distributed as a x2 distribution
with 1 degree of freedom.
For our bivariate analysis, we used the same covariates

from the univariate analysis along with 9 variants that
explained greater than 0.001 of SBP variance from the
GAW18 answers.We then compared these results with
univariate association models and a bivariate model in
which the effect of genotype on the mean trait value of
the two phenotypes was estimated separately, distributed
as a x2 distribution with 2 degrees of freedom.Results
were compared between approaches over 200 GAW18
replicates to determine which method provided the best
evidence for genetic signal for these SNPs, tallying the
proportion of replicates in which association was
detected at p-values below 0.001, 5.0× 10−5, and

5.0× 10−9.

Results
The average genetic correlation (rg) for SBP over 200
GAW18 replicates between visits 1 and 3 was
0.971 (±0.029)with an average environmental correlation
of 0.486 (±0.029). This high rgvalue demonstrates that
these two phenotypes are measures of the same genetic
mechanism and therefore appropriate for our proposed
bivariate association approach.

Univariate association
Table 1 shows results of three different association ana-
lyses for 9 SNPs influencing SBP across all 200 GAW18
replicates for p-values below 0.05, 0.001, and 5.0× 10−9.
All analyses identified the variant 3_48040283 in MAP4
as genome-wide significant

(
p− value < 5.0× 10−9).

The MAP4 SNP, 3_47957996 was significant in 199 of
the constrained bivariate tests and 200 of the uncon-
strained tests, with the number of genome-wide signifi-
cant replicates dropping slightly for univariate models.
Two additional variants, 1_66075952 from LEPR and
MAP4 variant 3_28601297, demonstrated low numbers
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of genome-wide significant associations across the four
tested association methods.

Bivariate association
When comparing the different methods, the bivariate
method in which the effect of genotype on mean trait
values of two phenotypes is constrained to be equal pro-
vided the most robust analysis, improving association for
all 9 variants compared with the bivariate analysis in
which these values were estimated separately and versus
univariate analyses of exam 1 and 3 in cases where the
p-value is less than 0.001 or pis below 5.0 × 10−5. To
ensure that the improved power for the constrained
bivariate approach did not come at the expense of
increased false-positive rates, we chose 20 SNPs that did
not explain any of the variance from the simulated
model. For these 20 null markers, there were an average
of 8.1 replicates less than 0.05 for the constrained bivari-
ate (range, 1-28), indicating no systematic inflation of
p-values under the null (data not shown).

Discussion
The analysis of genetic variants using longitudinal data
has the potential to be a valuable resource for determin-
ing biological and environmental factors affecting com-
plex disease phenotypes over time. This type of analysis
may provide increased power to detect rare genetic var-
iants in complex diseases or to better understand when
genetic components contribute to human development
[4]. In addition, these types of analyses may allow for the
identification of environmental covariates associated with
complex diseases[2]. However, although statistical genetic
methods for the analysis of longitudinal data have been
proposed, they have not been widely adopted. The single
degree of freedom association test we propose could also

be implemented easily in generalized estimating equa-
tions (GEEs) or other mixed-model frameworks. How-
ever, theoretical advantages to using the likelihood-based
variance component framework are that the bivariate var-
iance component model explicitly allows both shared/
stable and unshared/changing genetic and environmental
effects across timeand age in the random effects portion
of the model through the estimation of genetic and envir-
onmental correlations.

Conclusions
In this paper, we present a bivariate approach to increase
the genetic signal for a variant by constraining the effect
of the SNP on the phenotype using a variance-compo-
nent model. This model is predicated on the assumption
that there is no gene- by-age interaction; however, the
structure is general and is applicable to other issues in
genetic epidemiology. As whole-genome data becomes
more affordable for large-scale epidemiologic studies, an
important consideration will be to maximize the ability
to detect rare variants that have a large effect on complex
disease. The easiest way to detect these rare variants will
be through large pedigrees because they are amplified in
families. However, the sample size of family studies is
often small, making it difficult to determine association;
therefore, methodologies that maximize the use of the
genetic data and phenotypes from longitudinal studies
may allow for an increased ability to identify genetic var-
iants associated with complex disease. The model pre-
sented in this manuscript can be used as an early step in
the analysis of longitudinal data and may lead to the
development of more complex models.
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Table 1 Comparisons of association analyses results for 9 functional variants explaining more than 0.001 of the trait
variance.

Variant (%Variance
SBP1)

Bivariate constrained Bivariate unconstrained Univariate visit 1 Univariate visit 3

0.001 5.0 × 10
−5

5.0 × 10
−9

0.001 5.0 × 10
−5

5.0 × 10
−9

0.001 5.0 × 10
−5

5.0 × 10
−9

0.001 5.0 × 10
−5

5.0 × 10
−9

3_48040283 (0.0278) 2002 200 200 200 200 200 200 200 199 200 200 197

1_66075952 (0.0206) 153 76 1 121 50 1 137 64 1 125 57 2

3_47957996 (0.0149) 200 200 199 200 200 200 200 200 193 200 200 195

3_47956424 (0.0143) 182 133 3 177 111 4 169 108 5 169 115 3

3_48040284 (0.011) 49 14 0 33 8 0 24 4 0 30 7 0

13_28624294 (0.0081) 26 0 0 4 0 0 11 1 0 18 4 0

3_47913455 (0.004) 11 1 0 8 1 0 3 0 0 5 0 0

3_58109162 (0.0027) 41 9 0 22 5 0 13 0 0 8 0 0

19_12541795 (0.0017) 0 0 0 0 0 0 0 0 0 0 0 0
1Percent of the variance explained by the variant for SBP from the Genetic Analysis Workshop 18 (GAW18) answers.
2Number of replicates exceeding threshold.
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