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Abstract

Increasing evidence shows that complex diseases are caused by both common and rare variants. Recently, several
statistical methods for detecting associations of rare variants have been developed, including the test for testing
the effect of an optimally weighted combination of variants (TOW) developed by our group in 2012. These
methodologies consider phenotype measurement at only one time point. Because many sequence data have been
developed on population cohorts that contain phenotype measurements at multiple time points, such as the data
set provided in the Genetic Analysis Workshop 18 (GAW18), we extend TOW from phenotype measurement at one
time point to phenotype measurements at multiple time points. We then apply the newly proposed method to
the GAW18 data set and compare the power of the new method with TOW using only one phenotype
measurement. The application results show that the newly proposed method jointly modeling phenotype
measurements at all time points has increased power over TOW.

Background
There is increasing interest in detecting associations
between rare variants and complex traits. Although statis-
tical methods to detect common variant associations have
been well developed, these variant-by-variant methods
may not be optimal for detecting associations of rare var-
iants as a result of allelic heterogeneity as well as the
extreme rarity of individual variants [1]. Recently, several
statistical methods for detecting associations of rare var-
iants have been developed, including the cohort allelic
sums test [2], the combined multivariate and collapsing
method [1], the weighted sum statistic [3], and the variable
minor allele frequency threshold method [4], among
others. These methods are essentially testing the effect of
a weighted combination of variants. Thus, choosing appro-
priate weights is critical to the performance of these meth-
ods. In Sha et al [5], we proposed a novel test for testing
the effect of an optimally weighted combination of variants
(TOW). The optimal weights are analytically derived.

Based on the optimal weights, TOW tests the effect of a
weighted combination of variants. Simulation studies
showed that TOW performed better than the existing
methods across a wide range of scenarios. Aforementioned
methods are for phenotypes at a single time point and
cannot be applied to longitudinal phenotypes directly.
Meanwhile, quite a few statistical methods on the ana-

lysis of longitudinal data in the context of genetic map-
ping and association studies have been developed for
common variants [6-10]. A typical method is functional
mapping, which uses mathematical models to connect
the actions of genes and the development of a trait. Sev-
eral mathematical functions have been established to
describe the development of a phenotype, including para-
metric functions [6], semiparametric functions [8], and
nonparametric functions [9]. From a statistical stand-
point, any modeling using longitudinal phenotypes is
more informative than that using phenotypes at a single
time point and thus can increase power to test associa-
tion [7,10]. Functional mapping capitalizes on the full
information provided by growth and development of
phenotypes over time, increasing the power of gene
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identification. However, no statistical methods on the
analysis of longitudinal data are available for rare
variants.
To analyze the sequencing data with phenotype mea-

surements at multiple time points provided by Genetic
Analysis Workshop 18 (GAW18) [11], in this article, we
propose a novel method to test rare-variant association
with longitudinal phenotypes by extending our pre-
viously proposed method, TOW. Applying the proposed
method to the GAW18 data set, we compare the power
of the proposed method with TOW using only one phe-
notype measurement.

Methods
Consider a random sample of n individuals. Each indivi-
dual has been genotyped at M variants in a genomic
region (a gene or a pathway). Denote (xi1, ..., xiM) as the
genotypic score of the ith individual, where
xim ∈ {0, 1, 2} is the number of minor alleles. Let

xi =
M∑

m=1

wmxim denote the weighted combination of gen-

otypic scores at the M variants, where w1, . . . ,wM are
unknown constants and their values are determined
later using some optimal criteria. For longitudinal data,
we assume that phenotypes and covariates are collected
at K time points. Let yij and zij = (zij1, . . . , zijP)T denote
the trait values and the covariates of the ith individual
at the jth time point. For longitudinal data, we propose
a mixed linear model to model the relationship between
phenotype, covariates, and genotypic scores:

yij = ZT
ijα + βxi + vij + eij,

where y =
(
y11, ..., y1K , · · · , yn1, ..., ynK

)T, x = (x1, ..., x1, · · · , xn, ..., xn)T, v is
the vector form of vij, and e is the vector form of eij. We
assume that e follows normal distribution N(0, σ 2

e I) and v also
follows normal distribution N(0, σ 2

v D), where D = diag(D0, . . . ,D0)

and D0 depends on the level of correlation of phenotypes
between time points. The total variance of y is � = σ 2

v D + σ 2
e I.

Following Furlotte et al [10], we use sample correlation
coefficients of phenotypes between time points to estimate
D0. For variance components σ 2

v and σ 2
e , we use maximum

likelihood estimates (MLEs) under null hypothesis H0 : β = 0

as estimates of σ 2
v and σ 2

e and impute the estimated values of
σ 2
v and σ 2

e into model (1). Let σ̂ 2
v and σ̂ 2

e denote the MLEs
under null hypothesis of σ 2

v and σ 2
e , and let �̂ = σ̂ 2

v D + σ̂ 2
e I. After

imputing the estimated values of σ 2
v and σ 2

e , model (1)
becomes

y = Zα + xβ + ε, (2)

where ε follows N(0, �̂).
Let yT = �̂−1/2y, xT = �̂−1/2x, and ZT = �̂−1/2Z. Then

model (2) is equivalent to

yT = ZTα + xTβ + εT , (3)

where εT follows N(0, I). The score test statistic under
model (3) to test null hypothesis H0 : β = 0 is given by

Tscore =
(y∗Tx∗)2

σ̂ 2x∗Tx∗
,

where y∗ and x∗ are the residuals under models
yT = ZTα + εT and xT = ZTα + εT, respectively, and

σ̂ 2 =
1
nK

y∗Ty∗. Let Xm = (x1m, ..., x1m, · · · , xnm, ..., xnm)T,

X∗
m, X

∗
m is the residuals under the model XmT = ZTα + εT,

and X∗ = (X∗
1, . . . ,X

∗
M). Then Tscore =

wTX∗Ty∗y∗TX∗w
σ̂ 2wTAw

,
where A = X∗TX∗.
One potential problem with the score test Tscore is that

for genotype data of rare variants, it will be problematic
to use A to estimate the covariance matrix because of
sparse data. Following Pan [12] and Sha et al [5], we
replace A by A0 = diag(A). Then, the score test statistic

is equivalent to T0(w) =
wTX∗Ty∗y∗TX∗w

wTA0w
.

As a function of w, T0(w) reaches its maximum when
w = wo = A−1

0 X∗Ty∗ and the maximum value of T0(w) is

y∗TX∗A−1
0 X∗Ty∗. Based on longitudinal data, we define

the statistic to test the effect of the optimally weighted

combination (L-TOW) of variants,
∑M

m=1
wo
mxim, as

TL−TOW = y∗TX∗A−1
0 X∗Ty∗ =

M∑

m=1

(y∗TX∗
m)

2

X∗
m
TX∗

m

.

We use a permutation test to evaluate the p-value of
TL−TOW. In each permutation, we randomly shuffle the
elements of y∗.

Results
We chose 157 genetically unrelated individuals from the
file UNREL.txt. These individuals were extracted from
20 pedigrees in GAW18. We extracted genotypes for
those individuals from files named chrN-dose.csv.gz.
These files provided the estimated number of minor
alleles carried for each variant. We used 200 replicates
of simulated phenotype data in files PHEN.#.csv, where
# is replicate number 1 to 200. Sex, age, medication use,
and tobacco smoking were considered as covariates in
this study. The phenotype data have been simulated at
three time points with no missing data. There are 15
individuals without phenotype values in the simulated
phenotype data, so the actual number of individuals
used in this study is 142. To get reasonable powers for
the power comparison, we merged 2 replicates to form
a new replicate, so the total number of replicates for
power comparison in this study was 100. We know the
answers of the simulated data set in this study.
There are 2 related phenotypes, systolic blood pres-

sure (SBP) and diastolic blood pressure (DBP) at three
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time points. Based on the 2 related phenotypes, we con-
sider 4 phenotype measurements: SBP, DBP, the first
principal component of SBP and DBP, and the summa-
tion of SBP and DBP. For each phenotype measurement,
we consider five tests: (a) L-TOW, which uses pheno-
type measurements at three time points; (b) TOW-1,
TOW based on phenotype measurement at the first
time point; (c) TOW-2, TOW based on phenotype mea-
surement at the second time point; (d) TOW-3, TOW
based on phenotype measurement at the third time
point; and (e) TOW-Ave, TOW based on the average
phenotype measurements over three time points. Based
on each of the 4 phenotype measurements, we compare
the power of L-TOW, TOW-Ave, and TOW-Single
(average power of TOW-1, TOW-2, and TOW-3) to
detect association between each of the top 17 genes that
influence only DBP, only SBP, or both DBP and SBP.
The power comparisons based on phenotype measure-
ment DBP are given in Figure 1. This figure shows that
in 15 of 17 genes, L-TOW is the most powerful test,
TOW-Ave is the second most powerful test, and TOW-
Single is the least powerful one. Power comparisons
based on other three phenotype measurements show
similar patterns. (Results are not showed.)
We also evaluated type I error rates of the proposed

test, L-TOW. To evaluate the type I error we chose 200
blocks (100 variants in each block) from chromosome
21 that are far from causal variants. In each block, we
applied L-TOW to each of the 100 replicates to test
association between genotypes and the trait SBP. We
obtained one p-value for each replicate and each block.

The histogram of the 20,000 p-values is given in Figure 2.
This figure shows that the distribution of p-values is very
close to the uniform distribution, which indicates that
L-TOW has correct type I error.

Discussion
We have developed TOW to detect association of rare
and common variants [5]. Because the GAW18 data set
provided phenotype measurements at multiple time
points, similar to most of the existing methods for rare-
variant association studies, TOW can only be applied to
this data set by either using phenotype measurement at a
single time point or using the average phenotype mea-
surements over all time points. It is likely that a method
jointly modeling phenotype measurements at all time
points may increase power. This motivated us to extend
our previously developed method, TOW, from phenotype
measurement at one time point to phenotype measure-
ments at multiple time points. By applying our newly
developed method L-TOW to the GAW18 simulated
data set, we showed that L-TOW has increased power
over TOW by using either phenotype measurement at
one time point or average phenotype measurements over
multiple time points.
Although we describe our method using unrelated

individuals, it is not difficult to extend the method to
family-based data. For family data, denote (xij1, ..., xijM)
as genotypic score of the jth member in the ith family

and xij =
M∑

m=1

wmxijm. Let yijk and zijk = (zijk1, . . . , zijkP)T

Figure 1 Power comparisons of the three tests using diastolic blood pressure as a phenotype measurement. Power of TOW-Single is the
average power of TOW-1, TOW-2, and TOW-3. Numbers 1 to 17 on the x-axis refer to genes ZNF443, ABTB1, FLNB, SLC35E2, TNN, CGN, ZFP37,
LRP8, RAI1, ZNF544, LEPR, MTRR, NRF1, REPIN1, PTTG1IP, FLT3, and MAP4, respectively. TOW, statistic to test the effect of the optimally weighted
combination.
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denote the trait values and the covariates of the jth
member in the ith family at the kth time point. For
family data, we can use the following mixed linear

model yijk = ZT
ijkα + βxij + uij + vijk + eijk,

where uij is a random variable modeling the correla-
tion between family members, vijk is a random variable
modeling the correlation of phenotype measurements
between time points, and eijk is a random error term.
Based on this model, using a similar argument to that in
the Methods section, we can test association between
the phenotype and the genomic region.
Comparing our method with functional mapping,

whereas our proposed method uses age as a covariate and
uses a single parameter β as the average effect over time of
genotypes after adjusting for age effects, functional map-
ping uses mathematical models to connect gene actions
and growth or development of a trait. Our proposed
method has fewer parameters than the functional mapping
method and uses less information. Our proposed method
can easily incorporate the combination of rare variants.
Incorporating the combination of rare variants to func-
tional mapping requires further investigation.

Conclusions
We propose a novel method to test rare-variant associa-
tion with longitudinal phenotypes by extending TOW,
our previously proposed method. Application to the
GAW18 data set shows that the newly proposed method
jointly modeling phenotype measurements at all time
points has increased power over TOW, which uses only
one phenotype measurement.
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Figure 2 Histogram of p-values. Two hundred blocks (100 variants in
each block) that are far from causal variants in chromosome 21 are
chosen. In each block, the statistic to test the effect of the optimally
weighted combination (L-TOW) is applied to each of the 100 replicates
to test association between genotypes and the trait systolic blood
pressure. One p-value is obtained for each replicate and each block.
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