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Abstract

In this paper, we propose a novel mixed-effects model for longitudinal changes of systolic blood pressure (SBP)
over time that can estimate the joint effect of multiple sequence variants on SBP after accounting for familial
correlation and the time dependencies within individuals. First we carried out agenome-wide association study
(GWAS) using chromosome 3 single-nucleotide polymorphisms(SNPs) to identify regions associated with SBP levels.
In a second step, we examined the sequence data to fine-map additional variants in these regions. Four SNPs from
two intergenic regions (PLXNA1-TPRA1, BPESC1-PISTR1) and one gene (NLGN1) were detected to be significantly
associated with SBP after adjusting for multiple testing. These SNPs were used to capture the multilocus genotype
diversity in the regions. The multilocus genotypes derived from these four variants were then treated as random
effects in the mixed-effects model, and the corresponding confidence intervals (Cis) were built to assess the
significance of the joint effect of the sequence variants on SBP. We found that multilocus genotypes (GG,TT,AG,GG),
(GG,TT,GG,GG), and (GG,TT,AA,AG) are associated with higher SBPand (GG,CT,AA,AA), (AA,TT,AA,AA), and (AG,CT,AA,
AG) are associated with lower SBP. The linear mixed-effects models provide a powerful tool for GWAS and the
analysis of joint modeling of multilocus genotypes.

Background
The Genetic Analysis Workshop 18 (GAW 18) data set [1]
is drawn from the San Antonio Family Study with a total
of 959 participants from 20 families, and it includes gen-
ome-wide association study (GWAS) and whole genome
sequencing(WGS) data on all individuals. The participants
had 1to 4systolic blood pressure (SBP) measurements. At
each examination, current use of antihypertensive medica-
tions, hypertension diagnosis, and current tobacco smok-
ing status were recorded. This study provides a unique
resource for elucidating genetic factors associated with
longitudinal SBP after accounting for heterogeneity
between individuals and families.
The mixed-effects model was used to analyze the longi-

tudinal GWAS data and to estimate the joint effects of
multiple sequence variants while accounting for familial
correlation and the time dependencies within individuals.
A real phenotype data set, along with GWAS and dosage

sequence data on chromosome 3 were used for the analy-
sis. The advantage of the mixed-effects model is that it
can be used to model joint effects of genetic variants
through the use of random effects. We developed this
model for our analysis of the sequence variants [2].Our
results suggest that there is significant variability in the
effect of SBP across these multilocus genotypes.

Methods
Data
Four new variables were generated from the phenotype
data.We combined hypertension diagnosis and antihy-
pertensive medications to a single variable HTNmed
with three levels: HTN med (hypertension with treat-
ment), HTN no med (hypertension with no treatment),
and non-HTN to avoid singularity problem when we
fitted the models with interaction terms. The time-vary-
ing variablesmoking status has been collapsed to one
variable, including 671 nonsmokers, 161 smokers, and
93 others. We used visit.year as a time variable in
whichthe first visit is defined as 1 and the follow-up
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visits are 1+ number of years between the first and the
follow-up visit, accounting forunevenly spaced visits.
The age at the first visit (AGE.1) was used as a contex-
tual effect at individual level accounting for the variation
of SBP level between individuals at the beginning of the
study. The SNPs on chromosome 3 with call rate
greater than90%, p-values less than 1 × 10−6 in the tests
for Hardy Weinberg equilibrium,and minor allele fre-
quency (MAF) less than 1% were excluded from our
analysis.

Mixed-effects model for longitudinal genome-wide
association study
The SBP measurementhas two nested levels of random
effects; the first is family, and the second is individual.
We write the repeated measures of SBP over time, the
response vector at the innermost level of grouping, as
yij,i = 1, . . . ,m, j = 1, . . . , Ji, where m is the number of
families and Ji is the number of individuals within the
ith family. The length of the vector yij (i.e, the number
of SBP measurements for the jth individual in the ith
family) is nij Thus, the model formula can be written as

yij = Xijβ + Zibi + Zijbij + εij, i = 1, . . . ,m, j = 1, . . . , Ji,

bi ∼ N(0,ψ1), bij ∼ N(0,ψ2), εij ∼ N(0, σ 2
ε Rij),

where Xij is the fixed-effect regressor matrix and β is
the corresponding fixed-effect vector; Zi and Zij are
family-level and individual-level random effects regres-
sor matrices;and bi and bij are random effect vectors
(including random intercepts and random slopes of visit.
year)corresponding to Zi and Zij, respectively. �1 and �2

are the family-level and individual variance matrices of
random effects [3]. A continuous autoregressive correla-
tion structure of order one (denoted as Rij) was used to
account for the unevenly spaced and unbalanced visits.
Four covariates HTNmed, smoking, SEX, AGE.1, and
visit.year were used in the mixed-effects model. Back-
ward elimination technique was used for model selec-
tion and led to the model with fixed effects

E[yij—bi, bij] = β0 + AGE.1ij.βAGE.1

+ (visit.yearij ∗ HTNmedij.βvisit.year∗HTNmed

+ (HTNmedij ∗ smokingij ∗ SEXij)

.βHTNmHTNmed∗smoking∗SEX ,

and the random effects are the random intercepts and
random slopes of visit.year on both family and indivi-
dual levels. For simplicity, the interaction terms contain
the lower-order variables. Then the GWAS analysis was
carried out in whicheach SNP was considered as a fixed
main effect with no interaction with age and visit.year in
our models.

Joint modeling of sequence data using multilocus
genotype patterns as random effects
Characterizing the association between multiple SNPs
and disease outcomes can offer some new insights into
our understanding of disease etiology while providing
tools for making individualized treatment decisions.
However, this presents an analytic challenge because of
the large number of SNPs and the complex interaction
among them. For example, 80 parameters are needed to
account for the interaction term of four SNPs using
codominant model.
The use of multilocus genotypes as random effects

provides an intrinsic solution to the problem of dimen-
sionality. A simple dimension reduction technique
termed patterning is described in the HIV literature
[4,5] and involves assigning observations to the same
groups when the corresponding multilocus genotypes
are identical. The presence of gene-gene interaction
effect can be estimated by the variance of random inter-
cept. And the gene-environment interaction effect can
be estimated by the variance of random slope for the
environmental variable. The parameters associated with
each multilocus group are known as empirical best lin-
ear predictors (eBLUP). Further dimension reduction
techniques such as clustering have been described in [6]
in whichthe individuals are assigned to similar genotype
groups based on hierarchical or K-means clustering
methods.
In this paper, the multilocus groups are defined sim-

ply as groups of individuals with identical multilocus
genotypes. These multilocus genotype groups resulting
from patterning can be thought of as random samples
from the general population of genotypes. It is therefore
natural to treat them as random effects in a mixed-
effects model. Thus, the mixed-effects model for this
joint modeling of multilocus genotype patterns is same
as the models specified in the previous section except
that the nested levels of random effects are multilocus
genotype group and individual instead of family and
individual. The prediction intervals of the random
effects for the multilocus genotype groups can be
obtained using the bootstrap method [7] to assess the
significance of the multilocus genotype. A multilocus
genotype with a prediction interval of random effects
not containing zero means that the estimated SBP level
for these groups is significantly different from the popu-
lation average. Our motivation for the patterning is to
understand whether the risk of having high SBP is asso-
ciated with an individual’s multilocus genotype as a sin-
gle contributor. Furthermore, modeling the relationship
between genotype combinations and phenotype will
potentially capture information on how genes interact
with each other.
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Power analyses
The parametric bootstrap method [7] was used to per-
form power analyses in whichrandom samples were-
drawn from the fitted models. For the GWAS, the
power for each selected SNP was calculated based on
2000 parametric bootstrap samples using Bonferroni
corrected level of significance at 0.05/number of inde-
pendent GWAS tests. Similarly, for the joint modeling
of multilocus genotype patterns as random effects, we
calculated the power of detecting significant variance of
random effects on the level of multilocus genotype pat-
terns at 0.05 level of significance using 2000 parametric
bootstrap samples.

Results
A total of 59,649 SNPs and 860 individuals were used
for the analysis.From the phenotype mixed-effects
model, we found that for individuals who are on hyper-
tension medication, the estimated SBP level for female
smokers is approximately 8.2 mmHg(95% CI
[0.98,15.80]) higher than that of female nonsmokers.
The difference was not found in the other categories.
Figure 1 displays the estimated SBP longitudinal profiles
for men and women and smokers and nonsmokers with
different hypertension statuses from age 50 to 60 years.
The GWAS on chromosome 3 has identified two inter-

genic regions,PLXNA1-TPRA1and BPESC1-PISTR1, and
one gene,NLGN1, to be most significantly associated with
SBP (Figure 2). Thus, we examined the sequence data to
fine-map additional variants in these regions. We chose

the SNPs that are most significantly associated with SBP
for the joint modeling analysis. For SNPs that are in the
same haplotype blocks, only one SNP with the lowest
p-value was selected. Two SNPs from the two intergenic
regions PLXNA1-TPRA1 and BPESC1-PISTR1 and two
SNPs from the gene NLGN1 in different haplotype blocks
were chosen for the patterning using a relaxed GWAS
significance level −log10

(
p
)
= 5 (see Figure 2). Table 1

summarizes the information about the four SNPs and
their associated gene names, MAFs,p-values, and powers
calculated from the parametric bootstrap method.
The 860 individuals were assigned to a total of 36

multilocus genotype patterns (patterns with fewerthan
six individuals were grouped together). A mixed-effects
model with multilocus genotype patterns as random
intercept was used to examine the interaction effects
among these four SNPs. A parametric bootstrap method
with 2000 iterations was then used to calculate the
power of detecting significant variance of random inter-
cept on the level of multilocus genotype patterns and to
obtain the 95% CIs of the random intercepts for the 36
multilocus genotype patterns.We found significant het-
erogeneity in SBP trajectories among the multilocus
genotype patterns in whichthe 95% CI for the standard
deviation of random intercept is (1.79,4.48) with a
power of 0.986.Figure 3 shows the 95% CIs of the ran-
dom intercepts for the multilocus genotype patterns.
We found that genotypes (GG,TT,AG,GG), (GG,TT,GG,
GG), and (GG,TT,AA,AG) are associated with higher
SBP,and (GG,CT,AA,AA), (AA,TT,AA,AA), and (AG,

Figure 1 Predicted systolic blood pressure (SBP) levels. HTN, hypertension
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CT,AA,AG) are associated with lower SBP. Our results
suggest that there is significant variability in the effect
of SBP across the multilocus genotypes.

Discussion
A linear mixed-effects model was used for GWAS
accounting for family structure and time dependence

Figure 2 Manhattan plot for genome-wide association study (GWAS) on chromosome 3.

Table 1 Four selected single-nucleotide polymorphisms from three regions

Position Gene/region SNP Ref/minor allele MAF p-value Power

127,074,020 PLXNA1-TPRA1 rs11716834 G/A 29 0.0000011 0.959

138,919,221 BPESC1-PISTR1 rs13100625 T/C 15.75% 0.00000039 0.993

173,866,797 NLGN1 rs11927722 A/G 24.45% 0.0000017 0.890

173,986,397 NLGN1 rs549641 G/A 31.33% 0.000009 0.650

Figure 3 Predicted 95% confidence intervals (Cis) of random intercepts for the multilocus genotype groups.
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within each individual, adjusting for confounding vari-
ables in the first step. Two intergenic regions (PLXNA1-
TPRA1 and BPESC1-PISTR1) and one gene (NLGN1)
were detected to be significantly associated with SBP
after adjusting for multiple testing on chromosome 3.
The parametric bootstrap method was used to assess
the statistical power of detecting these significant SNPs
based on the Bonferroni corrected significance level
0.05/59649 and showed that mixed-effects models pro-
vided a powerful tool for longitudinal data analysis
accounting for nested data structure, timedependence
within repeated measures, and confounding variable. In
the second step, the multilocus genotype patterns from
four most significant SNPs were used as random effects
for the analysis of the joint effect of multiple sequence
variants. We found that there was a significant variation
in SBP level among these multilocus genotypes. The
power analysis strongly supports the evidence of the
variation of SBP among these multilocus genotype pat-
terns. The use of multilocus genotypes as random
effects in the mixed-effects model framework provides a
novel tool for analyzing gene-gene and gene-environ-
ment interactions.
Mixed-effects models are a powerful tool with a wide

range of applications for longitudinal studies and nested
and/or cross-classified data sets. The analysis of large
extended-pedigree data using mixed-effects models was
discussed in detail by Schork [8]. In practice, if we are
interested in both SBP and DBP levels, a multivariate
mixed-effects model can be carried out in SAS [9] or R.

Conclusions
In summary, the analysis of the GAW18 real phenotypes,
GWAS, and sequence data allowed us to examine the
advantage of a linear mixed-effects model for GWAS and
the usefulness ofmultilocus genotypes random effects for
joint effects of multiple sequence variants. The novel
method proposed could also be developed to identify spe-
cific multilocus genotypes that interact with environmen-
tal factors for predicting outcomes. Linear mixed-effects
models can also accommodate large pedigree data and be
extended to multivariate analysis.
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