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Abstract

The linkage era left a rich legacy of pedigree samples that can be used for modern genome-wide association
sequencing (GWAS) or next-generation sequencing (NGS) studies. Family designs are naturally equipped to detect
rare variants, control for population stratification, and facilitate the study of parent-of-origin effects. Unfortunately,
pedigree likelihoods are notoriously hard to compute, and current software for association mapping in pedigrees is
prohibitively slow in processing dense marker maps. In a recent release of the comprehensive genetic analysis
software MENDEL, we implemented an ultra-fast score test for association mapping with pedigree-based GWAS or
NGS study data. Our implementation (a) works for random sample data, pedigree data, or a mix of both;(b) allows
for covariate adjustment, including correction for population stratification;(c) accommodates both univariate and
multivariate quantitative traits; and (d) allows missing values in multivariate traits. In this paper, we assess the
capabilities of MENDEL on the Genetic Analysis Workshop 18 sequencing data. For instance, when jointly testing
the 4 longitudinally measured diastolic blood pressure traits, it takes MENDEL less than 51 minutes on a standard
laptop computer to read, quality check, and analyze a data set with 959 individuals and 8.3 million single-
nucleotide polymorphisms (SNPs). Our analysis reveals association of one SNP in the q32.2 region of chromosome
1. MENDEL is freely available on http://www.genetics.ucla.edu/software.

Background
Pedigree data are attractive in modern association studies
because they permit control of population substructure
and study of parent-of-origin effects [1]. Related affecteds
are also more likely to share the same disease-predisposing
gene than unrelated affecteds. The classical variance com-
ponent model has been a powerful tool for mapping quan-
titative trait loci in pedigrees [2].Polygenic effects are
effectively captured by the kinship coefficient matrix as a
variance component. In genome-wide association sequen-
cing (GWAS), two alleles of a single nucleotide poly-
morphism (SNP) shift trait means and can be tested as a
fixed effect. However, fitting a variance component model
with pedigrees is computationally challenging, especially
when it has to be done for a huge number of markers.We
reexamine the computational bottlenecks and implement

an ultra-fast score test when pedigree structure is explicitly
given. Score tests require no additional iteration under the
alternative model.All that is needed is evaluation of a
quadratic form combining the score vector and the
expected information matrix at the maximum likelihood
estimates under the null model. Fast pedigree GWAS is
now implemented in our software package MENDEL [3]
for easy use by the genetics community. In this paper, we
demonstrate the capabilities of MENDEL on the Genetic
Analysis Workshop 18 (GAW18) sequencing data.

Methods
Quantitative trait locus (QTL) association mapping typi-
cally invokes the multivariate Gaussian distribution to
model the observed trait values y = (yi) over a pedigree.
The standard model (2, Chapter 8) collects the correspond-
ing means into a vector ν and the corresponding covar-
iances into a matrix� and represents the loglikelihood of a

pedigree as L = −1
2
lndet � − 1

2

(
y − ν

)t
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)
,
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where the covariance matrix is typically parameterized as

� = 2σ 2
a � + σ 2

d �7 + σ 2
h H + σ 2

e I. (1)

Here the variance component � is the global kinship
coefficient matrix capturing additive polygenic effects, and
�7 is a condensed identity coefficient matrix capturing
dominance genetic effects. The household effect matrix H
has entries hij = 1 if individuals i and j are in the same
household and 0 otherwise. Individual environmental con-
tributions and trait measurement errors are incorporated
via the identity matrix I. When one tests multiple traits,
the covariance matrix has to be properly augmented by
matrix Kronecker products. QTL fixed effects are captured
through the mean component v = Aβ for some predictor
matrix A and vector of regression coefficients β.
To implement likelihood ratio testing, iterative maxi-

mum likelihood estimation must be undertaken for each
and every SNP under the alternative hypothesis. This
unfortunate requirement is the major stumbling block
retarding pedigree analysis. Score tests serve as conveni-
ent substitutes for likelihood ratio tests. A careful analy-
sis shows that the basic elements of the score statistic
can be quickly assembled. In MENDEL [3], SNPs with
the most impressive score test p-values (top 50 by
default) are further tested by the more accurate likeli-
hood ratio method, thus achieving a good compromise
of speed and power for large-scale QTL analysis.

Results
Data description
Our analysis is based on the genotype calls for 959 indi-
viduals (464 directly sequenced and the rest imputed)
provided in the chrX-geno.csv.gz files. Simulated traits
in all 200 replicates (SIMPHEN.1-200) were used for
size and power studies in the first example. The second
example presents results from a pedigree GWAS per-
formed on chromosome 3 using the traits in the first
simulation replicate (SIMPHEN.1). A whole genome
QTL analysis for the real phenotype diastolic blood
pressure (DBP) is presented in the final example.

Adjustment for environmental effects
Both the traits (blood pressures) and some environmental
factors are measured (or simulated) on study individuals
at 3 or 4 visits. To adjust for the environmental effects of
Age, BPMed, Smoke, and Sex, we model the systolic
blood pressure (SBP) by a linear mixed model (LMM):

SBPi,t = μi + Agei,tβAge + BPMedi,tβBPMed

+ Smokei,tβSmoke + SexiβSex

+
(
Agei,t × Sexi

)
βAge×Sex + εi,t,

(2)

where i indexes individuals, t indexes 3 time points, β s
are the fixed effects, μi is an individual level random
intercept assumed to be normal with covariance
cov

(
μi,μj

)
= 2ϕij, and εi,t are independent standard normal

errors. If we stack the traits SBPi,t into a column, this corre-
sponds to a variance component model with a genetic com-
ponent 2σ 2

g (131
t
3 ⊗ �), where � is the kinship coefficient

matrix, and an environmental component σ 2
e I3n. LMM is

fitted by maximum likelihood (ML).
The estimated fixed effects for traits in simulation repli-

cate 1 are summarized in Table 1. Estimates under the lin-
ear model (LM) are listed for comparison. Results from
LMM imply significant additive genetic effects. The esti-
mated heritability is 0.65 for SBP, 0.55 for DBP, and 0.63
for Q1. Residuals from LMM will be used as the multiple
traits in QTL association mapping. Two types of residuals

can be used. Residuals r(1)i,t = SBPi,t − (μ̂i + xti,tβ̂), where μ̂i

are the best linear unbiased estimate (BLUE) of the ran-
dom intercept μi, are decorrelated from the polygenic

effects. QTL mapping can be performed on r(1)i,t without

the additive and dominant genetic components in (1).
However, this strategy ignores the correlation between the

longitudinal traits. Residuals r(2)i,t = SBPi,t − (μ̂ + xti,tβ̂),

where μ̂ is the estimate for the grand intercept, yield the
adjusted traits still containing the polygenic effects. QTL

mapping using r(2)i,t needs to keep the genetic components

to properly capture the correlation between traits. In the
following, we refer to the former as the decorrelated resi-
duals (method 1) and to the latter as the correlated
residuals (method 2).

Size and power study (using SIMPHEN.1-200)
Powers for detecting the 6 functional variants in the
MAP4 gene on chromosome 3 are evaluated based on the
provided 200 simulation replicates. Figure 1 displays the
box plots of the 200 −log10(p-values) for each variant
using either the decorrelated (method1) or the correlated
residuals (method2). Type I errors are evaluated based on
the provided Q1 trait which is not genetically influenced.
In general, we found that the decorrelated residuals
(method1) lead to higher power but also inflated type I
error. The test using the correlated residuals (method2)
has well-controlled type I error, high power (0.78 ∼ 0.90)
for detecting the common variants 47957996 and
48040283 but low power for the rare variants 47913455
and 47957741. For comparison, we also list the power and
the size of likelihood ratio test (LRT) using correlated resi-
duals. LRT edges out the score test in a few cases, but the
difference is not significant.LRT is practically infeasible for
a large number of SNPs. In the following two pedigree
GWAS examples, we present only the results of the score
test using correlated residuals (method 2).
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Pedigree Genetic Analysis Workshopon chromosome 3
(using SIMPHEN.1)
We performed pedigree GWAS on all available
sequence variants on chromosome 3 using the corre-
lated residuals from the traits in SIMPHEN.1.A total
of 1,213,657 SNPs passed the filtering and were sub-
ject to testing.Figure 2 displays the run times and the

Manhattan and quartile-quartile(QQ) plots for jointly
testing the multivariate traits SPB. No variants passed
the genome-wide significance level (horizontal line).
For the null trait Q1, 5.29% of SNPs have p-values
less than 0.05, corroborating the correct size of the
score test. Results for trait SBP are similar and not
displayed.

Table 1 Summary of environmental effects for traits systolic blood pressure (top), diastolic blood pressure (middle)
and Q1 (bottom) in simulation replicate SIMPHEN.1

SBP μ βAge βBPMed βSmoke βSex βAge×Sex σ 2
g σ 2

e R2

LM
LMM

119.360
(0)

119.739
(0)

0.135
(2 × 10−11)

0.168
(1 × 10−11)

13.088
(7 × 10−91)

6.981
(0)

0.284
(6 × 10−1)

0.556
(4 × 10−1)

−19.547
(1 × 10−49)

−20.985
(0)

0.387
(4 × 10−43)

0.418
(0)

–
112.58

139.558
58.128

42.4%
74.46%

DBP μ βAge βBPMed βSmoke βSex βAge×Sex σ 2
g σ 2

e R2

LM
LMM

75.781
(0)

75.382
(0)

−0.052
(7 × 10−4)

−0.032
(8 × 10−2)

1.893
(7 × 10−5)

−0.751
(1 × 10−1)

−0.109
(8 × 10−1)

−0.087
(9 × 10−1)

−8.201
(2 × 10−16)

−8.305
(7 × 10−12)

0.124
(5 × 10−9)

0.131
(3 × 10−7)

–
49.848

81.632
40.395

4.8%
54.8%

Q1 μ βAge βBPMed βSmoke βSex βAge×Sex σ 2
g σ 2

e R2

LM
LMM

38.642
(0)

39.115
(0)

−0.087
(2 × 10−3)

−0.079
(1 × 10−3)

−2.508
(3 × 10−2)

−2.211
(3 × 10−2)

0.270
(7 × 10−1)

0.239
(7 × 10−1)

8.904
(4 × 10−8)

8.809
(1 × 10−9)

0.005
(9 × 10−1)

0.000
(9 × 10−1)

–
53.373

85.260
31.615

21.9%
76.8%

Numbers in parenthesis are p-values.

DBP, diastolic blood pressure; SBP, systolic blood pressure.

Figure 1 Results of power and size study. Top: Box plots of −log10(p-values) from score tests for the 6 functional variants in MAP4 based on
200 simulation replicates. The red (left) ones use the decorrelated residuals (method 1). The blue (right) ones use the correlated residuals
(method 2). The horizontal line represents the 0.05 significance level. Bottom: Empirical power and type I error.
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Figure 2 Results of pedigree genome-wide association sequencing for testing traits systolic blood pressure (SBP), diastolic blood
pressure (DBP) and Q1 in simulation replicate SIMPHEN.1 on the 1,213,657 single-nucleotide polymorphisms on chromosome 3 and
849 individuals. Top: Run times on a standard laptop. Bottom: Manhattan plot (left) and QQ plot (right) for the traits (DBP1,DBP2,DBP3).
The horizontal line represents the genome-wide significance level. Plots for SBP and Q1 are similar and are omitted here.

Figure 3 Results for pedigree genome-wide association sequencing of 8,348,674 single-nucleotide polymorphisms for the real
diastolic blood pressure (DBP) traits. Top: Environmental effects fitted from linear model (LM) and linear mixed model (LMM). Numbers in
parenthesis are p-values. Bottom: Manhattan plot (left) and quartile-quartileplot (right). The horizontal line represents the genome-wide
significance level.
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Analysis of real phenotypes diastolic blood pressure
The phenotypes (SBP and DBP measured at 4 time
points) are available for 1389 members from 20 extended
families. The largest family contains 107 individuals; the
smallest, 27. Genotypes at 8,348,674 SNPs were available
on 959 of the individuals. For brevity, we only present
results for the multivariate DBP trait here.
We adopted the strategy discussed earlierto adjust the

multivariate traits for the environmental factors. The table
in Figure 3 summarizes the effects of environmental
effects estimated by LM and LMM (2). The estimated her-
itability of the DBP traits is 0.2564. We analyzed all SNPs
and pedigrees together for the multivariate traits
(DBP1,DBP2,DBP3,DBP4). To read in all the data and
run standard QC procedures took 10 minutes and 14 sec-
onds. This QC excluded 10,603 SNPs and 124 individuals
based on genotyping success rates below 98%. The subse-
quent ped-GWAS analysis ran in 40 minutes and 55 sec-
onds and included all of the results plotted in Figures 3.
The complete run never used more than 3.2 GB of RAM.
The most significant p-value found by whole genome

analysis was 1 × 10−10.5 on chromosome 1 q32.2 region
at 210,338,112 base pairs. No other SNPs reached gen-
ome-wide significance.

Conclusions
By supplying a comprehensive, fast, and easy-to-use pack-
age for GWAS on quantitative traits in general pedigrees,
we hope to encourage exploitation of family-based data sets
for gene mapping. A gene mapping study should collect as
large a sample as possible consistent with economic con-
straints and consistent trait phenotyping.If the sample
includes pedigrees, all the better. Here we have argued that
score tests can efficiently handle unrelated individuals, ped-
igrees, or a mixture. For human studies, in whichcontrolling
breeding is forbidden, nature has provided pedigrees segre-
gating every conceivable genetic trait. Many of these pedi-
grees are known from previous linkage studies and should
be treasured as valuable resources.
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