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Abstract

Every known link between a genetic variant and blood pressure improves the understanding and potentially the
risk assessment of related diseases such as hypertension. Genetic data have become increasingly comprehensive
and available for an increasing number of samples. The availability of whole-genome sequencing data means that
statistical genetic models must evolve to meet the challenge of using both rare variants (RVs) and common
variants (CVs) to link previously unidentified genome loci to disease-related traits. Penalized regression has two
features, variable selection and proportional coefficient shrinkage, that allow researchers to build models tailored to
hypothesized characteristics of the genotype-phenotype map. The following work uses the Genetic Analysis
Workshop 18 data to investigate the performance of a spectrum of penalized regressions using at first only CVs or
only RVs to predict systolic blood pressure (SBP). Next, combinations of CVs and RVs are used to model SBP, and
the impact on prediction is quantified. The study demonstrates that penalized regression improves blood pressure
prediction for any combination of CVs and RVs compared with maximum likelihood estimation. More significantly,
models using both types of variants provide better predictions of SBP than those using only CVs or only RVs. The
predictive mean squared error was reduced by up to 11.5% when RVs were added to CV-only penalized regression
models. Elastic net regression with equally weighted LASSO and ridge components, in particular, can use large
numbers of single-nucleotide polymorphisms to improve prediction.

Background
The potential number of lives affected by successful early
identification of patients at high risk for hypertension has
motivated researchers across a spectrum of fields. On the
frontier of risk prediction is the identification of genetic
variants linked to traits such as high blood pressure.
Advancements in sequencing have fostered the identifica-
tion of a growing number of loci related to blood pressure.
One such study performed by the International Consor-
tium for Blood Pressure Genome-Wide Association Stu-
dies identified 29 single-nucleotide polymorphisms (SNPs)
related to systolic blood pressure (SBP) [1]. A second com-
pelling study concluded that perhaps as many as hundreds
of SNPs affect blood pressure; moreover, rare variants
(RVs) (variants with minor allele frequencies [MAFs] less

than 5%) in addition to novel common variants (CVs)
(MAFs greater than 5%) are necessary to explain the rela-
tionship between allelic variants and blood pressure [2].
One promising tool that may be able to leverage risk

information simultaneously in both CVs and RVs is
penalized regression. The range of available penalties
allows researchers to estimate models with a mixture of
two desirable properties: variable selection and propor-
tional shrinkage of regression coefficients. The following
work systematically measured the advantages of the dif-
ferent types of penalized regression methods in the pre-
diction of SBP using only CVs, only RV, or combinations
of the two.

Methods
Data
The primary source for genotypic, phenotypic, and cov-
ariate data was Genetic Analysis Workshop 18 (GAW18)
data files. GAW18 data is provided for approximately
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1000 Mexican American individuals consisting of 20 ped-
igrees enriched for type 2 diabetes. The pedigrees con-
tained between 21 and 76 individuals. The phenotype of
interest was the SBP measure from the first time point.
Genotype data for more than 8,000,000 genome locations
was derived from sequencing data for all odd-numbered
chromosomes, representing all sequencing data made
available by GAW18. Approximately one-third of the var-
iants were common. The analysis accounted for the cov-
ariates age, gender, smoking status, and antihypertensive
medication.
The pairwise correlation structure resulting from

either a family structure or a cryptic population struc-
ture was removed using an estimate of the variance-cov-
ariance matrix. We estimated the variance-covariance
structure as a function of the identity-by-state (IBS)
matrix calculated from all available genome-wide asso-
ciation study data. EMMAX software [3] was used to
obtain our IBS matrix estimate. For IBS matrix conver-
gence, it was necessary to exclude individuals missing
more than 10% of genotypes (pre-imputation). There-
fore, the final sample size for this study was 759.

Model
Let Yi be the SBP value at the first examination for sub-
ject i = 1, . . . ,n and define Xij as subject i’s minor allele
count (0,1, or 2) for SNP j = 1, . . . , p. Covariate informa-
tion for subject i is notated by Xi,age for age, Xi,gen for
gender, Xi,smoke for smoking status, and Xi,med for antihy-
pertensive medication use. The effect of antihypertensive
medication on blood pressure is not consistent across
samples; thus, it is not ideal to include patients using
this medication. However, removing patients who used
treatment medication from a diabetes-enriched sample
would have excluded a significant part of the GAW18
data. We chose to incorporate use of antihypertensive
medication as a covariate to account for medication use
while minimizing assumptions about its impact on SBP.
We assumed the following model relates the genotypic
data to the phenotype : Y = Xβ + ε, where ε ∼ N(0,

∑
).

Here, Y = Yn×1, a vector of the phenotype measurement
for the n samples; X = Xn(1+4+p), the design matrix for
the genotype and covariate data, including a column of
ones for β0 estimation; and ε is a n × 1 vector of random
errors. The vector of predicted phenotypes, Ŷ , is then
equal to Xβ̂ , where β̂ is the maximum likelihood esti-
mate (MLE) of the coefficient vector, β. More
specifically,

β̂ =
(
X′�−1X

)−1
X′�−1Y =

[(
�−1/2X

)′ (
�−1/2X

)]−1(
�−1/2X

)′
�−1/2Y =

[(
X∗)′ (

X∗)]−1(
X∗)′

Y∗,

where Y∗ =
1/2∑

Y and X∗ =
1/2∑

X. Thus, we can dec-

orrelate our samples by premultipling both Y and X by∑−1/2
. Kang et al (2010) demonstrated that the var-

iance-covariance matrix, �̂, can be estimated effectively
as a function of the IBS matrix [3]. Kang et al showed
the effectiveness of their method on both seemingly
unrelated samples and samples with a substantial popu-
lation structure [3]. For Kang et al’s method,∑̂

= σ 2
g K + σ 2

r In, where genetic variance parameter,

σ 2
g = residual variance parameter, and K = IB̂S. We dec-

orrelated our samples using the
∑̂−1/2

derived with the

Kang et al method. During preparation of the final
manuscript, work appeared by Rakitsch et al (2013)
using a similar method to correct for population struc-
tures in a penalized regression approach to multimarker
association mapping [4]. The present investigation stu-
died a model of the new vector of decorrelated pheno-
types, Y*, as a function of the new genotype and
covariate matrix, X*. To be clear, the model used in the
current study is Y*=X*b+ε*, where ε∗ ∼ N(0, σ 2In).
Note: σ 2 ≈ 1.
We first consider the unpenalized regression model.

MLE is asymptotically unbiased with fixed p as n → ∞,
but it may not be for a large p. One possible remedy is to
introduce regularization or penalization on regression
coefficients. We obtained predictions of Y * by first
obtaining β̂, then Ŷ∗ = X∗β̂. For penalized regression

Table 1 Median predicted mean square errors for calculated from the 100 randomly generated testing sets

Top 10 SNPs Top 100 SNPs Top 1000 SNPs

Regression
method

CV
only

RV
only

CV =
10;

RV >0

CV >0;
RV =
10

CV
only

RV
only

CV =
100;
RV >0

CV >0;
RV =
100

CV only RV only CV =
1000;
RV >0

CV >0;
RV =
1000

OLS 3.723 0.719 1.856 0.722 107.775 24 98.109 21.748 370644.875 311336.868 37064.875 63274.28

SCAD 0.701 0.674 0.636 0.625 0.657 0.664 0.625 0.635 0.641 0.656 0.625 0.639

LASSO 0.691 0.661 0.613 0.612 0.649 0.644 0.601 0.616 0.632 0.625 0.608 0.611

Elastic net (a=
0.5)

0.689 0.661 0.610 0.610 0.646 0.643 0.601 0.613 0.630 0.619 0.608 0.610

Ridge 0.681 0.658 0.644 0.640 0.664 0.680 0.641 0.672 0.778 0.780 0.742 0.741

TLP 0.688 0.657 0.616 0.621 0.652 0.641 0.618 0.617 0.653 0.633 0.653 0.607

CV, common variant; RV, rare variant; SNP, single nucleotide polymorphism.
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methods, β̂ is found by maximizing a penalized log-likeli-
hood [5]: l (β) − λP (β).
Candidate penalties that perform variable selection are

LASSO [6], SCAD [7], and the truncated L1-penalty
(TLP) [8]. LASSO regression is performed by

applying the penalty P (β) =
∑p

k=1
|βk|. The

SCAD penalty, P (β ,λ), replaces λP (β) with
dP (β ,λ) /dβ =

∑p

k=1
λsign (βk)

[
I (|βk| ≤ λ) + (aλ − |βk|)+/ (a − 1) λ · I (|βk| > λ)

] for a = 3.7.

TLP regression uses P (β) =
∑p

k=1
min

(|βk| /τ , 1
)
,

where τ > 0 is a thresholding parameter, beyond which
there is no further penalty. Regressions using these
penalties are three methods to shrink many regression
coefficient estimates to 0, effectively selecting a subset
of SNPs to be used for prediction. The variable selection
feature can be of particular value in genetics settings
such as ours where the number of true causative var-
iants is likely a small fraction of the considered SNPs.
If instead of variable selection, it is advantageous to pro-
portionally shrink all regression coefficients, a candidate
penalized regression method is ridge regression [9].

Ridge regression uses the penalty P (β) =
∑p

k=1
β2
k .

Elastic net penalized regression [10] is a hybrid of the
two approaches, with a penalty structure that is a
mixture of the LASSO and ridge penalties controlled by
a user-specified mixing parameter, α, which is restricted
to 0 [1]. The elastic net penalty [10] is
P (β) = (1 − α) ‖β‖22 + α‖β‖1, where α is selected to
match the desired balance of variable selection and coef-
ficient shrinkage.

Implementation
We restricted our study to the top 1000 CV SNPs and
top 1000 RV SNPs as identified by the marginal signifi-
cance of a Kruskal-Wallis test of the minor allele counts
and SBP values for the 759 samples. The real-data
observations were randomly divided into equally sized
training, tuning, and testing sets (n = 253 for each), and
a sequence of models was then fit on the training set.
The sequence was defined by incremental increases in
both the penalty and penalty-specific parameters (e.g., a
and τ). The sequence of penalty (and tuning parameter
when applicable) values used to fit the models spanned
a range comprehensive enough to allow identification of
the values which optimized performance for SCAD,
LASSO, elastic net, and ridge regression. The additional
tuning parameter, τ, used in TLP-penalized regression
greatly increased the computational time; therefore, the
number of τ and τ pairs considered was constrained.
The TLP results presented here likely underestimate the
true performance of this method. In all penalized regres-
sions, the optimal penalty value was the one minimizing
prediction error in the estimated tuning phenotypes

when applying the regression coefficients estimated
from the training model based on that penalty value.
Models were fit in a directed way based on the num-

ber and type of variants. First, we examined only the top
10, 100, and 1000 most significant CVs. Then we
repeated the examination using only the top 10, 100,
and 1000 RVs. Next, we added 1, 10, 100, and 1000 of
the complementary type of variant to the model. For
example, after fitting a model with only the top 10 CVs,
four models were fit using these same 10 CV SNPs and
the top 1, then top 10, then top 100, and finally the top
1000 RVs. The formal assessment of the regression
methods was done by applying the training coefficients
corresponding to the optimal penalty to the testing data.
This process of randomly dividing the real data set into
training, tuning, and testing sets and then investigating
the predictive performance of penalized regression
methods was repeated 100 times as a form of cross-vali-
dation. The regression approaches were compared using
predictive mean squared error (PMSE). Define

PMSE =
∑n

i=1

(
Ŷ∗
i − Y∗

i

)2
/n. OLS, SCAD, LASSO, elas-

tic net, and ridge-regression estimates were generated
using R packages glmnet [5] and ncvreg [11]. TLP esti-
mates were obtained using FGSG: Feature Grouping and
Selection Over an Undirected Graph in Matlab [12].

Results
Descriptions of the PMSE of Y* from the 100 randomly
created testing data sets are presented in Figure 1 and
Table 1. Figure 1 provides box plots for the PMSEs
obtained using the different types of regression on the 100
data sets. The intent of Figure 1 is to provide an assess-
ment of differences and reductions in PSME for different
regression penalization methods within and between
inputted SNP scenarios. Figure 1A presents results from
models in which fitting was based on the top 10 SNPs for
each of the variant types. Figure 1B presents results from
models in which fitting was based on the top 100 SNPs for
each of the variant types, and Figure 1C presents results
from models in which fitting was based on the top 1000
SNPs for each of the variant types. In each figure, the first
two columns represent models using only CVs or only
RVs. The third column provides PMSEs of Y* for the best
model using the fixed number of CVs and 1, 10, 100, or
1000 RVs. For example, the column labeled CV = 10,
RV>0 gives the smallest PSME from the four models using
exactly the top 10 CVs and the top 1, 10, 100, or 1000
RVs. Similarly, the fourth column describes the model
with the smallest PMSE using the fixed number of RVs
and 1, 10, 100, or 1000 CVs. Figures 1A, 1B and 1C are
plotted on the same scale to facilitate comparisons across
them. Table 1 gives the median PMSE for the 12 modeling
scenarios across the 100 data sets. Please note that the
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OLS PMSEs are not presented in Figure 1 because of their
relative size.
It is evident from Table 1 that penalized regression

methods outperform OLS regardless of the number or
type of candidate variants. Fixing the type of penalized
regression and the number of top SNPs considered for
the model allows us to uncover that RV-only models
usually outperformed CV-only models. The difference
was small, though. The central question to be answered
by this work was whether adding RVs to CV models
improved SBP prediction. We found that for penalized
regression models, the inclusion of at least one of the
complementary type of variant improved or maintained
the performance of the model. This was true whether
we fixed 10, 100, or 1000 top SNPs, added CVs to RV-
only models, or added RVs to CV models. Again, the
differences were small; however, small but perceptible
shifts in the overall distributions as presented in Figure
1 support this conclusion.
Comparisons across models based on the top 10, top

100, and top 1000 SNPs revealed an interesting pattern.
As the number of candidate SNPs increased, the sparse
SCAD, LASSO, and TLP penalties were generally super-
ior to the nonsparse ridge penalty. Differences were
small, at most 0.1555 mm Hg, and need confirmation
on different SBP real data sets. The conclusion should
also be corroborated with simulated SBP data sets gen-
erated from genetic models reflecting a comprehensive
range of possible SBP genetic architectures. Further-
more, although reductions in PMSE occurred within the
same variant composition across the three top SNP
groupings (e.g., comparing CV only for the top 10 with
CV only with the top 100 SNPs), the gains were often
less than those made just by adding the complementary
type of variant to the model. Combined, these two
results suggest that the true number of strong causative
variants is at most moderate and includes both RVs and

CVs. Ridge regression was the best or nearly identical to
the best penalty choice when only the top 10 CVs or
RVs were used, indicating that all of these top variants
are integral in understanding the association between
genotypes and SBP. TLP was a top performer with mod-
els using only the top 10 or top 100 RVs. As more SNPs
of any type were included, the elastic net equally
weighted to LASSO and ridge was generally superior.
That is, there was a need for a selection element to dis-
tinguish noise from true effect, and there was a need for
a nonsparse penalty feature to still incorporate larger
numbers of SNPs in the regression model. This perhaps
indicates that beyond a small set of strong causative
SNPs, there are many SNPs that are truly associated
with the outcome, but the majority of them have small
marginal effects sizes. This could prove important when
considering that previous research has found at least 29
causative SNPs; thus, undiscovered variants associated
with SBP may have at most moderate effect sizes.

Discussion
The strongest conclusion can be drawn about the effect
of including RVs in addition to CVs when predicting
SBP. The PMSE was reduced by up to 11.5%, and gener-
ally reduced between 4% and 9%, when RVs were added
to CV-only penalized regression models. This was true
when any of 10, 100, or 1000 top SNPs were used.
PMSE comparisons of single-variant type models to
combined-variant type models revealed that both RVs
and CVs explain variance in SBP. Every penalty consid-
ered in the study improved SBP prediction over OLS.
This was true whether estimation used only CVs, used
only RVs, or used both types of variants. The elastic net
penalized regression was best at leveraging the informa-
tion in the additional SNPs (RVs or CVs) and produced
the best overall models. (Again, the absolute reduction
in PMSE was too small to be statistically significant

Figure 1 Box plots of the median predicted mean square errors (PMSEs) calculated from the 100 randomly generated testing sets. (A)
Top 10 single-nucleotide polymorphisms (SNPs). (B) Top 100 SNPs. (C) Top 1000 SNPs. CV, common variant; RV, rare variant.
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because of the variance in the PSME median distribu-
tions.) Caution is needed when making conclusions
about the TLP because of the limited number of combi-
nations of l and τ studied because of time constraints.
The results here likely understate the performance of
TLP; thus, the small gains from using TLP with the top
10 and top 100 RVs warrant future analysis for possible
confirmation. Work on the genotype-hypertension map
should specifically consider RVs and CVs. The interest-
ing result that a hybrid penalty with both selection and
proportional shrinkage components performed best
hints at an underlying architecture in which numerous
SNPs with moderate main effects are interrelated in
how they are associated with blood pressure. Overall,
the results presented here provide evidence that pena-
lized regression, especially a hybrid of LASSO and ridge
regression, can be used to improve SBP prediction.
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