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Abstract

Background: Hypertension is a prevalent condition linked to major cardiovascular conditions and multiple other
comorbidities. Genetic information can offer a deeper understanding about susceptibility and the underlying disease
mechanisms. The Genetic Analysis Workshop 18 (GAW18) provides abundant genotype data to determine genetic
associations for being hypertensive and for the underlying trait of systolic blood pressure (SBP). The high-dimensional
nature of this data promotes dimension reduction techniques to remove excess noise and also synthesize genetic
information for complex, polygenic traits.

Methods: For both measured and simulated phenotype data from GAW18, we use sparse principal component
analysis to obtain sparse genetic profiles that represent the underlying data structures. We then detect associations
between the obtained sparse principal components (PCs) and SBP, a major indicator of hypertension, following up by
investigating the sparse PCs for genetic structure to gain insight into new patterns.

Results: After adjusting for multiple testing, 27 of 122 PCs were significantly associated with measured SBP, offering a
large number of components to investigate. Considering the top 3 PCs, linked genetic regions have been identified;
these may act in unison while associated with SBP. Simulated data offered similar results.

Conclusions: Sparse PCs can offer a new data-driven approach to structuring genotype data and understanding

the genetic mechanics behind complex, polygenic traits such as hypertension.

Background

Hypertension is a condition linked to major cardiovascular
issues that result in heart failure and increased death rates
[1-3]. Many risk factors, such as obesity, aging, and smok-
ing, have been attributed to an individual’s susceptibility to
hypertension, but recent access to abundant genetic data
has shifted investigation in a new and exciting direction.
The Genetic Analysis Workshop 18 (GAW18) exemplifies
not only this transition of focus but also the realization of
new data-related challenges.
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Offering genotype data for more than 24 million single-
nucleotide polymorphisms (SNPs) on odd-numbered
autosomal chromosomes from 959 individuals, the goal of
GAW18 is to determine genetic markers that play a cru-
cial role in blood pressure levels. A data environment of
this size is termed high-dimensional, referring to the vast
number of variables, and poses many statistical challenges
relating to insufficient degrees of freedom when modeling
(because n < p) and multiple testing; it creates an interest-
ing platform to practice new statistical tools that confront
these challenges. In particular, dimension-reduction meth-
ods that narrow our focus to the important data features
could be extremely beneficial.

Principal component analysis (PCA) is a commonly
used multivariate method for both dimension reduction
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and data visualization. It defines a new and convenient
set of variables Z, called principal components (PCs), as
linear combinations of original variables X. These PCs
are uncorrelated and ordered by maximal variance, pos-
sibly giving the analyst an easier data set to work with.
If most of the original variance is held by the first few
PCs, one can discard the rest and work with a much
lower dimensional problem without colinearity. However,
making sense of what the PCs represent is often an issue
because they are linear combinations of all original vari-
ables. To alleviate this limitation, sparse PCA methods
[5-8] have been developed by incorporating methodology
related to penalized regression [4] to achieve sparse coef-
ficient, or loading, vectors. Tuning parameters control
the level of sparseness induced, making the procedures
very flexible. Setting most of the loadings to exactly 0,
PCs can now be tied to tight groups of original variables
that remain, resulting in an interpretable version of
classical PCA.

In this paper, we use sparse PCA methodology to
inform group structure in a portion of the GAW18 sin-
gle-nucleotide polymorphism (SNP) data before moving
on to model systolic blood pressure (SBP), a surrogate of
hypertension, with representative sparse PCs. Through
interpreting the PCs significantly associated with SBP, it
is our goal to reveal unique data-driven groups of SNPs
associated with our phenotype of interest. Because SBP is
a polygenic trait, we expect the PCs to shed new light on
structures of genetic regions that might act together.
After describing our choice of data and methods of analy-
sis, we will present our results and some discussion. We
end by summarizing the limitations with using sparse
PCA to handle genotype data and discussing future ideas.

Methods

Data description

The GAW18 data providers obtained real phenotype,
covariate, and genotype data from 959 possibly related
individuals. Fixing the genotype data, they prescribed a
model-based relationship between functional genotypic
regions, informed by the real data set and external
sources, to simulate 200 phenotype-covariate data sets.
We will use the real phenotype data to demonstrate an
uninformed analysis that would occur in practice and use
the simulated phenotype data to check the ability of our
analysis to consistently detect similar group structure
surrounding some truly associated SNPs.

Target sample. Of the 959 individuals from whom
data is available, we chose to use only the 157 unrelated
individuals.

Target variables (phenotype and covariates). Although
the GAW18 group provided longitudinal phenotype and
covariate data, we focus on just the baseline measures. We
chose SBP as our target phenotype variable because its
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continuous structure allows detection of modest changes.
We adjust for age, sex, smoking status, and use of
blood pressure medication as covariates when attempting
to detect associations between SBP and genotype
information.

Target variables (genotype). The genotype data pro-
vided contained more than 24 million SNPs found on
odd-numbered autosomes. Following the GAW18 group
suggestions in the guide, we aim at chromosome 3.
Furthermore, we consider only the 65,519 SNPs from
the genome-wide association studies (GWAS) file of
chromosome 3 because the sparse PCA method requires
a sufficient level of variation.

Final data. There were instances of missing data in the
157 unrelated subjects and 65,519 SNPs. After removing
individuals with missing phenotype or covariate data, we
used PLINK software to remove individuals with genotypic
calling error rates greater than 5% and remove SNPs that
had missing data, minor allele frequency (MAF) less than
5%, or that failed the Hardy-Weinberg equilibrium (HWE)
test at 0.001 level of significance. The final real phenotype
data set we work with has 122 unrelated individuals with
complete data for SBP, age, sex, smoking status, hyperten-
sion medication, and 46,574 SNPs. The final 200 simulated
phenotype data sets each have complete data on 133 indi-
viduals because there was no missing data in phenotypes
or covariates.

Analysis description

We used a 3-step process to ultimately determine groups
of SNPs jointly related to SBP for the real phenotype data
and each of the 200 simulated phenotype data sets. An
additive model for SNPs was assumed, meaning SNPs
(coded 0, 1, and 2 for copies of the minor allele) were
taken as continuous.

Step 1: SNP-by-SNP filtering. To reduce the computa-
tional burden for our sparse PCA method, we first applied
a linear regression model for each SNP individually,
retaining those that were statistically associated with SBP
at a 5% level of significance after adjusting for age, sex,
smoking status, and blood pressure medication covariates.
This also ensures our sparse PCA method will not accept
marginally insignificant SNPs that could draw attention
away from those that are most likely to be of effect. We
did not adjust for multiple testing here because this step is
merely used as a filter.

Step 2: Sparse PCA to obtain groups. Taking SNPs
retained from step 1, we performed the sparse PCA
method published in 2009 by Witten et al [6] to obtain a
less dimensional yet representative set of PCs. The remain-
ing nonzero loadings of these sparse PCs correspond to the
SNPs contributing to their linear combinations. Prior work
suggests this sparse PCA method could be the best choice
among competing sparse PCA methodology when facing
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such a high-dimensional (n < p) data situation [8]. Tuning
parameter selection: From the real phenotype data set, we
selected a tuning parameter that maintained a balance
between adjusted-percentage-explained variance of PCs as
calculated by Witten et al [6] and sparseness of loading
vectors among the sparse PCs. This tuning parameter was
then used for each of the 200 simulated data sets to keep
dimension reduction consistent.

Step 3: Relating sparse PCs to SBP. Finally, we applied
a linear regression model for each sparse PC individu-
ally, retaining those that were topmost statistically asso-
ciated with SBP. We then cross-referenced the SNPs
with nonzero loadings in these significant sparse PCs
with gene information to attribute genetic structure to
the groupings and see if new structures emerged. We
report the most prevalent genetic regions.

Alongside these steps, we also tracked progress of two
of the topmost contributing SNPs in the underlying
simulation model. They were rs6442089 from the MAP4
gene (B = -2.3810) and rs1131356 from the FLNB gene
(B = 1.0007). We were restricted to following these
because they were the only notable contributing SNPs
still remaining in our GWAS chromosome 3 data; rare
variants (i.e., SNPs with MAF <5%) were given heavier
weights in the simulation model.

All steps were performed within the statistical pro-
gramming language R (version 2.15.2). To apply the
sparse PCA method, we used the authors’ published R-
package called PMA [6].

Results
Real phenotype data analysis
Step 1. Of the 46,574 SNPs in our real data, 2256 were
deemed to be statistically associated with SBP at a 5%
level of significance. Minimum p-value was 1.72 x 107,
Therefore, we retained these SNPs into the sparse PCA
phase with a data set of 122 individuals and 2256 SNPs.
Step 2. Tuning parameter selection must be appropri-
ate because it decides how sparse the obtained PCs are at
the expense of adjusted-percentage-explained variance.
Attempting tuning parameters A = 3, 4, 5, 6, 7, 8, 9, 10,
12, 14, 16, 18, 20, 25, 30, we gauged that choosing tuning
parameter A = 10 resulted in a balance between adjusted-
percentage-explained variance and sparseness. This was
graphically determined based on diminishing returns in
both criteria across tuning parameters. Performing the
sparse PCA, a mean (SD) of 246.2 (44.1) nonzero load-
ings per PC existed across the 122 PCs, reflecting that a
decent level of sparseness was introduced to the PCA
procedure. These PCs retained 66.1% of the total variance
across p = 2256 SNPs that entered the sparse PCA phase.
This is a relatively large adjusted-percentage-explained
variance because roughly 90% of the loadings were
forced to 0.
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Step 3. Of the 122 sparse PCs obtained from the real
data, 27 were deemed statistically associated with SBP at a
Bonferroni-corrected 5/122 = 0.00041% level of signifi-
cance; because PCs tend to be uncorrelated, the Bonfer-
roni correction here is appropriately conservative. The
minimum p-value was 4.37 x 10°°, Figure 1 displays plots
of the loadings from the top 3 PCs that are statistically
associated with SBP (PC11, PC9, and PC19). The SNP
base-pair positions are plotted along the x-axis, and the
absolute loading values (weights) are plotted along the
y-axis, giving an intuitive look at SNP profiles based on
their contribution to the significantly associated PC.
Genetic regions that are prevalent and hold large weights
will display as a tall peak on the graph. In PC11, the largest
loading values occur along the intergenic region between
ZPLDI and MIR548A3 genes and within the LAMP3 and
MCCCI gene. In PC9, the largest loading values were
found along the intergenic region between NPHP3-AS1
and TMEM1108 genes, as well as within the TMEM108
gene. In PC19, the largest loadings occurred within the
ROBO?2 gene, along the intergenic region between CDCPI
and TMEM158 genes, within the FGF12 gene, and along
the intergenic region between FGFI2 and MD21D2.
Table 1 provides the number of SNPs that contribute to
each PC from these genetic regions, as well as the percen-
tage of contribution.

Simulated phenotype data analysis

Step 1. Of the 46,574 SNPs in each simulated data set, a
mean (SD) of 2385.4 (232.0) across the 200 data sets was
deemed statistically associated with SBP at a 5% signifi-
cance. Minimum p-values had a mean (SD) of 3.65 x 107
(3.79 x 107); rs6442089 from the MAP4 gene was
deemed significant in 38 of 200 simulated data sets, and
rs1131356 from the FLNB gene was deemed significant
in only 8 of the 200 simulated data sets. Because we
would expect 10 out of 200 samples to result in a false
positive if there were no underlying association (i.e., if
B = 0), rs6442089 (B = -2.3810) has been detected an
appropriately increased number of times, but rs1131356
(B = 1.0007) seems unrelated. For this reason, we now
look exclusively at rs6442089.

Step 2. Because our focus is to track a specific SNP, we
will follow only those data sets that contain rs6442089.
Tuning parameters were fixed at A = 10 to keep sparse-
ness and adjusted-percentage-explained variance consis-
tent with the real phenotype data analysis. For each of
the 38 data sets that retained rs6442089, we ran sparse
PCA to obtain the 133 sparse PCs.

Step 3. Of the 133 sparse PCs obtained for each of the
38 data sets that retained rs6442089, a mean (SD) of 28.1
(8.5) PCs was deemed statistically associated with SBP at a
Bonferroni-corrected 5/133 = 0.00038% level of signifi-
cance. From each of the 38 lists of significant PCs, we
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Figure 1 Visualizing single-nucleotide polymorphism profiles from the top 3 sparse principal components (PCs) associated with
systolic blood pressure. (A) Sparse PC 11. (B) Sparse PC 9. (C) Sparse PC 19. Plots of the loading values for a PC to visually inspect genetic
structure. bp, base-pair.

Table 1 Notable genetic regions from top 3 sparse principal components associated with systolic blood pressure

PC 11 PC9 PC 19
Genetic # SNPs in % Load Genetic region # SNPs in % Load Genetic region  # SNPs in % Load
region’ PC contrib. PC contrib. PC contrib.
ZPLDT to 28 0.686748 NPHP3-AST to 13 0563824 ROBO2 1 0336118
MIR548A3 TMEM108
LAMP3 0.071419 TMEM108 6 0.209901 FGF12 5 0.151836
Mccct 4 0.070489 FGF12 to 5 0.119935
MB21D2
CDCPT to 6 0.090491
TMEM158

'Genetic region is either the gene symbol or intergenic region (e.g., genel to gene2).

PC, principal component; SNP, single-nucleotide polymorphism.

then identified the PC for which rs6442089 had the largest
contribution (absolute loading value) and detected genetic
structure from the SNPs (loadings) in this PC. Among the
38 PCs chosen in this way, the MAP4 gene had a large set
of SNPs with substantial loading contribution; this is as
expected because rs6442089 is from MAP4. With few
exceptions, the SMARCCI gene was equivalent in both
SNP frequency and loading contribution, suggesting it
may be linked with MAP4. This consistency shows the
robustness of sparse PCA to noise generated in the pheno-
type; likewise, but less consistent and impactful, were the
DHX30 and CSPGS5 genes. Intergenic regions between

CSPGS5 and SMARCCI1, SMARCCI and MAP4, and MAP4
and CDC25A were also notable.

Discussion

The sparse PCs constructed from a list of marginally
associated SNPs gives insight into a new grouping struc-
ture. With a genetic component that is complex and
polygenic, understanding the genetics behind SBP from
this data-driven angle may be rewarding. Perhaps genes
and intergenic regions that are highly weighted within
the same PC have some functional similarities, or act in
unison.
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The choice of tuning parameter heavily influences our
conclusions. We could have, for example, chosen a tuning
parameter such that there were 10 to 20 remaining non-
zero loadings for each loading vector. This would allow us
to focus on the last groups of SNPs remaining, but with
drastically increased sparseness comes loss of information,
namely, severe reduction in adjusted-percentage-explained
variance and loss of the SNPs of interest for the simulated
data. Prior biological understanding, including specifying
candidate genetic regions, could help to guide decisions
regarding the tuning parameter.

The strategy we followed in this paper has some limita-
tions. For example, concentrating only on unrelated indivi-
duals reduced our sample size, leading to low power when
working with the simulated data, and limited our ability to
detect the two SNPs of interest. Similarly, because we
chose to focus on the GWAS file, containing only common
SNPs (MAF >5%), we were not able to search for the rare-
variant SNPs with higher coefficient weights in the underly-
ing simulation model. Step 1 of our analysis strategy
informs, or supervises, our sparse PCA. We could have dis-
carded step 1 in favor of unsupervised sparse PCA to
search for SNPs jointly associated with SBP, although not
marginally; any finding here could be very interesting. Our
assumptions regarding the genotype data structure may
have influenced the results from our analysis. Considering
each SNP as continuous is usually a necessity when apply-
ing sparse PCA; however, this assumes an additive model
from which only linear effects can be measured.

It would be interesting to investigate performance of
sparse PCA using the variance-covariance matrix with
the similarity measure developed and explained by Niit-
suma and Okada (2005) that is meant to handle catego-
rical data such as SNPs [9,10]. Also, investigating
differences in findings between our supervised approach
and an unsupervised approach to sparse PCA could be
an excellent simulation study for future work.

Conclusions

As we have demonstrated, sparse PCA methodology is
able to reduce the dimension of SNPs and reveal groups
potentially related to a phenotype of interest. It can also
be applied to many other, perhaps more suitable, data
types and could be of significant benefit to researchers
attempting to handle high-dimensional data, especially
when considering complex, polygenic traits.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AB designed the overall study, conducted statistical analyses, and drafted
the manuscript; BN assisted with statistical analyses and interpretation; and
JB conceived the overall study and assisted in drafting and critical revision
of the manuscript. All authors read and approved the final manuscript.

Page 5 of 5

Acknowledgements

JB acknowledges grant funding from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canadian Institutes of Health
Research (CIHR, grant 84392). The GAW18 whole genome sequence data
were provided by the T2D-GENES (Type 2 Diabetes Genetic Exploration by
Next-generation sequencing in Ethnic Samples) Consortium, which is
supported by NIH grants U0T DK085524, UOT DK085584, UO1 DK085501, U01
DK085526, and UOT DK085545. The other genetic and phenotypic data for
GAW18 were provided by the San Antonio Family Heart Study and San
Antonio Family Diabetes/Gallbladder Study, which are supported by NIH
grants PO1 HL045222, RO1 DK047482, and ROT DK053889. The GAW is
supported by NIH grant ROT GM031575.

This article has been published as part of BMC Proceedings Volume 8
Supplement 1, 2014: Genetic Analysis Workshop 18. The full contents of the
supplement are available online at http://www.biomedcentral.com/bmcproc/
supplements/8/S1. Publication charges for this supplement were funded by
the Texas Biomedical Research Institute.

Published: 17 June 2014

References

1. Carretero O, Oparil S: Essential hypertension: part I: definition and
etiology. Circulation 2000, 101:329-335.

2. TuK, Chen Z Lipscombe L: Prevalence and incidence of hypertension
from 1995 to 2005: a population-based study. CMAJ 2008, 178:1429-1435.

3. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB,
Bravata DM, Dai S, Ford ES, Fox CS, et al: Heart disease and stroke
statistics—2012 update: a report from the American Heart Association.
Circulation 2012, 125:2-e220.

4. Zou H, Hastie T: Regularization and variable selection via the elastic net.
J Roy Stat Soc Ser B-Stat Met 2005, 67:301-320.

5. Zou H, Hastie T, Tibshirani R: Sparse principal component analysis.

J Comput Graph Stat 2006, 15:265-286.

6. Witten D, Tibshirani R, Hastie T: A penalized matrix decomposition, with
application to sparse principal components and canonical correlation
analysis. Biostatistics 2009, 10:515-534.

7. Lee D, Lee W, Lee Y, Pawitan Y: Super-sparse principal component
analysis for high-throughput genomic data. BMC Bioinformatics 2010,
11:296-305.

8. Bonner A, Beyene B: Sparse principal component analysis for high-
dimensional data: a comparative study. Open Access Dissertations and
Theses, McMaster University 2012, Paper 7146.

9. Niitsuma H, Okada T: Covariance and PCA for Categorical Variables.
Proceedings of The 9th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD-05) Hanoi, LNAI 3518, Springer-Verlag;
2005, 523-528.

10.  Hamid J, Meaney C, Crowcroft N, Granerod J, Beyene J: Potential risk
factors associated with human encephalitis: application of canonical
correlation analysis. BMC Med Res Methodol 2011, 11:120-129.

doi:10.1186/1753-6561-8-51-595

Cite this article as: Bonner et al: Testing for associations between
systolic blood pressure and single-nucleotide polymorphism profiles
obtained from sparse principal component analysis. BVC Proceedings
2014 8(Suppl 1):595.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BioMed Central



http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.biomedcentral.com/bmcproc/supplements/8/S1
http://www.ncbi.nlm.nih.gov/pubmed/10645931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10645931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18490638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18490638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22179539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22179539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21859458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21859458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21859458?dopt=Abstract

	Abstract
	Background
	Methods
	Data description
	Analysis description

	Results
	Real phenotype data analysis
	Simulated phenotype data analysis

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

