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Abstract

Background: We represent the protein structure of scTIM with a graph-theoretic model. We construct a hierarchical
graph with three layers - a top level, a midlevel and a bottom level. The top level graph is a representation of the
protein in which its vertices each represent a substructure of the protein. In turn, each substructure of the protein is
represented by a graph whose vertices are amino acids. Finally, each amino acid is represented as a graph where the
vertices are atoms. We use this representation to model the effects of a mutation on the protein.

Methods: There are 19 vertices (substructures) in the top level graph and thus there are 19 distinct graphs at the
midlevel. The vertices of each of the 19 graphs at the midlevel represent amino acids. Each amino acid is
represented by a graph where the vertices are atoms in the residue structure. All edges are determined by
proximity in the protein’s 3D structure. The vertices in the bottom level are labelled by the corresponding
molecular mass of the atom that it represents. We use graph-theoretic measures that incorporate vertex weights to
assign graph based attributes to the amino acid graphs. The attributes of the corresponding amino acids are used
as vertex weights for the substructure graphs at the midlevel. Graph-theoretic measures based on vertex weighted
graphs are subsequently calculated for each of the midlevel graphs. Finally, the vertices of the top level graph are
weighted with attributes of the corresponding substructure graph in the midlevel.

Results: We can visualize which mutations are more influential than others by using properties such as vertex size
to correspond with an increase or decrease in a graph-theoretic measure. Global graph-theoretic measures such as
the number of triangles or the number of spanning trees can change as the result. Hence this method provides a
way to visualize these global changes resulting from a small, seemingly inconsequential local change.

Conclusions: This modelling method provides a novel approach to the visualization of protein structures and the
consequences of amino acid deletions, insertions or substitutions and provides a new way to gain insight on the
consequences of diseases caused by genetic mutations.

Background
Historically, graphs have been used to represent chemical
structures since the inception of graph theory and there
is a well-developed field known as chemical graph theory
[1,2]. Whereas in chemical graph theory each vertex
represents an atom, the size of a protein molecule does
not lend itself well to this representation. Thus, in many
cases in the literature where a protein is represented by a

graph, each vertex represents an amino acid and there-
fore each vertex represents ten, more or less, atoms. Two
vertices are connected by an edge in the graph if the cor-
responding amino acid residues are within a specified
distance threshold, typically 7 or 8 angstroms. Using this
approach, protein structures can be viewed as networks
of amino acids [3-6]. Even so, due to the size of many
proteins, these graphs still tend to be very large. Since
many of the chemical descriptors are defined for small
molecules, measures from network science proved to be
more informative for macromolecules.

* Correspondence: knisleyd@etsu.edu
1Department of Mathematics and Statistics, East Tennessee State University,
Johnson City, TN 37614
Full list of author information is available at the end of the article

Knisley and Knisley BMC Proceedings 2014, 8(Suppl 2):S7
http://www.biomedcentral.com/1753-6561/8/S2/S7

© 2014 Knisley and Knisley; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:knisleyd@etsu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Topological features of protein structures exhibit many
desirable network properties such as high clustering coef-
ficients and short average path lengths which shed light
on aspects of protein folding [7-9]. A review of the uses
of graphs as models of protein structure can be found in
[10], which is a summary of work prior to 2002 for each
method of representation - that is, vertices representing
atoms versus vertices representing amino acids. However,
again due to the size of these graphs, graph-theoretic
representations have not provided an effective visualiza-
tion tool, nor has it been an effective way to determine
other properties of the protein’s structure, such as the
location of binding sites. In order to address the chal-
lenge of modelling a molecule at different scales - that is,
simultaneously capturing full scale global properties of a
large graph while identifying local properties of a small
region of the graph - we developed a vertex weighted
hierarchical graph model of a protein structure [11].
There are distinct advantages to each of the approaches
discussed above, namely to let each vertex represent an
atom, or to let each vertex represent an amino acid. To
capture the advantages of each, we build a representation
that uses both methods. That is, we use the nested graphs
concept to integrate the information obtained at each
scale with all other scales. To do so we construct a hier-
archical graph-theoretic structure to represent the three-
dimensional structure of a protein. Since the goal in [11]
was to identify the global effects of a single point muta-
tion, we now address the BioVis Data Challenge with the
vertex-weighted, hierarchical graph approach.
We first represent the challenge protein scTIM as a

graph with 19 vertices. Each vertex represents a sub-
structure loosely determined by the secondary structures
of the protein. Each substructure contains either a beta
strand or an alpha helix, but not both. For example,
substructure D1 contains a single beta strand and sub-
structure D2 contains a single alpha helix. Other sec-
ondary structures such as loops and turns are not
strictly separated, although they may be if the loop is
exceptionally long as in the case of D14. The 19 sub-
structures are given in Table 1.
We label the vertices Di, 0 < i < 20 and two vertices,

Di and Dj are connected if there exist at least two pairs
of amino acids whose distance does not exceed 7 ang-
stroms where for each pair, one amino acid is in Di and
one is in Dj. We call this graph the top level graph. The
top level graph is shown in Figure 1. In turn, each sub-
structure of the protein is also represented as a graph.
That is, nested in each vertex of the top level graph is
another graph. This collection of nested graphs constitu-
tes the midlevel graphs. For graphs at the midlevel, each
vertex represents an amino acid and two vertices are
adjacent if the distance from the central carbons of each
residue is not more than 7 angstroms. In addition, this

must hold true for at least two amino acid pairs. We
use the data in the Protein Data Bank [12] file 2YPI for
these calculations. Other criteria can be applied. For
instance, we have sometimes measured from the cen-
troid of the residues and used a distance threshold of 8
angstroms.
Finally, each amino acid is represented by a graph

where each vertex represents an atom and two vertices

Table 1 Substructure intervals used for the midlevel
graph.

Substructure
name

sequence
location

substructure sequence

D1 -beta 2-15 ARTFFVGGNFKLNG

D2 - alpha 15-30 GSKQSIKEIVERLNTA

D3 - beta 30-43 ASIPENVEVVICPP

D4 - alpha 43-55 PATYLDYSVSLVK

D5 - loop 55-74 KKPQVTVGAQNAYLKASGAF

D6 - alpha 74-88 FTGENSVDQIKDVGA

D7 - beta 88-96 AKWVILGHS

D8 - alpha 96-105 SERRSYFHED

D9 - alpha 105-120 DDKFIADKTKFALGQG

D10 - beta 12-130 GVGVILCIGET

D11 - alpha 130-139 TLEEKKAGKT

D12 - alpha 139-151 TLDVVERQLNAVL

D13 - beta 151-166 LEEVKDWTNVVVAYEP

D14 - loop 166-177 PVWAIGTGLAAT

D15 - alpha 177-204 TPEDAQDIHASIRKFLASKLGDKAASEL

D16 - beta 204-211 LRILYGGS

D17 - alpha 211-225 SANGSNAVTFKDKAD

D18 - beta 225-237 DVDGFLVGGASLK

D19 - alpha 237-248 KPEFVDIINSRN

Figure 1 The top level graph for scTIM. Graphs D1 to D19 are the
midlevel graphs representing each of the 19 substructures, respectively.
Properties of the midlevel graphs are quantified by the vertex weights
in the top level graph. Secondary structural elements are nodes, and
two nodes are connected by an edge if there are a pair of amino acids
in the domains that are separated by no more than 7.0 A.
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are adjacent if the corresponding atoms have a bond.
We do not consider the hydrogen atoms in this model
(this is the commonly known hydrogen suppressed ball-
and-stick representation of a molecule). We let a single
vertex represent the central carbon in the backbone and
thus we obtain a rooted graph where we denote the
backbone carbon as the root. There are twenty graphs
at this level which we can refer to as the bottom level.
More layers are possible and may be desirable for a very
large protein or a protein complex. Thus this general
method can be applied to a very large structure such as
a protein complex or a relatively small protein. We
determined that three layers are sufficient for the scTIM
model.
We first describe the process for a single point mutation.

Associated with each amino acid is a set of descriptors
derived from graph-theoretic measures of its graph repre-
sentation. These values were first defined by the authors
in [13] where a neural network was trained to recognize a
change in binding affinity due to mutations. A single point
mutation in a protein results in a change in exactly one of
the amino acids in the protein’s amino acid sequence.
Thus, one vertex in exactly one of the midlevel graphs will
receive a new set of descriptors that corresponds to the
change at the bottom level. This results in a change of
attributes of a single vertex at the midlevel. This change of
attributes at the midlevel results in a change of graph-the-
oretic measures of the midlevel graph that utilize vertex
weights. Consequently, the vertex at the top level graph
that represents the substructure where the single point
mutation occurred will receive a new set of attributes. In
this way we are able to capture the flow of information
from a single point mutation to the entire protein and
visualize the effects. The process described above changes
the vertex weights, but not the structure itself, of the top
level graph. Using graph-theoretic measures that incorpo-
rate vertex weights, we obtain a unique set of graph-
theoretic values associated with each mutation.
In addition, there are a number of folding algorithms

that will provide a predicted structure for a given amino
acid sequence. For example, PhYre2 [14] and I-TASSER
[15] have both consistently performed well in the annual
protein prediction competition known as CASP- Critical
Assessment of Structure Prediction [16]. Consequently,
a predicted pdb file can be obtained for a mutated
sequence and the process described above can be iterated
with the predicted structure. This results in a top-level
graph whose structure may differ from the wild type. For
the life scientists, we are developing a tool for “virtual
mutations”. By changing a residue (or a set of residues)
in the sequence, this changes a vector of descriptors for a
vertex (or vertices) at the midlevel. This in turn changes
the values of the Top Level graph that are associated
with that mutation. The consequences of the mutation

on the structure of the graph can be viewed immediately.
We describe the methods in more detail in the methods
section and the results are below.

Results
Modelling a single point mutation with a predicted
structural change
First we show the result when the vertex weighted hier-
archical method is coupled with a predicted change in
the 3D structure. Figures 2 and 3 show the top level
graph of the wild type protein and the mutant protein
V51R respectively and were generated by Cytoscape [17].
We selected this mutation, V51R, to illustrate how a
single point mutation can affect the top level graph in a
significant way. The single point mutation V51R is one of
the mutations found in the defective protein dTIM pro-
vided by the contest designers. To obtain these figures,
we submitted the mutant sequence to PhYre2. PhYre2

returns the predicted structure as a pdb type file. We
construct the hierarchical graph for each, the predicted
structure provided by PhYre2 and the wild type provided
by the PDB file 2YPI. To determine the vertex weights at
each level, we can begin with the bottom level. Asso-
ciated with each amino acid graph are a number of
graph-theoretic measures such as the weighted domina-
tion number and the weighted degree of a vertex. To
define the graph based measures, we modify the defini-
tion of common graphical invariants such as those found
in a standard introductory text for graph theory [18,19].
For example, the degree of a vertex v in a graph is the
number of neighbors of v. For a vertex-weighted graph,

Figure 2 Top level graph with no mutations . Cytoscape
visualization of the top level graph whose vertex weights were
determined by properties of the midlevel graphs, which in turn
were weighted by amino acid descriptors. By mapping additional
bioinformatic and biophysical properties to the nodes and edges,
and allowing these weights to guide the layout, we can acquire
additional intuition into the importance in different domains and
domain-domain interactions.
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we define the weighted-degree of a vertex v as the sum of
the weights of the neighbors of v. Note that in a standard
graph without vertex weights, if we assign all vertices a
weight of one, then the weighted definition is equivalent
to the standard definition. Thus weighted definitions gen-
eralize the standard definitions in a natural way. For
instance, we can also generalize the standard definition
of the domination number of a graph.
A vertex set S is said to be a dominating set of vertices if

every vertex in the graph is either in the set S or has a
neighbor in S. Necessarily then, the entire set of vertices
of a graph is a dominating set. The domination number
of a graph is the minimum cardinality among all domi-
nating sets. Since the cardinality of a set can be found by
assigning a weight of 1 to each element of the set and
then summing the weights, we define the weighted-domi-
nation number to be the minimum weight among all
dominating sets. The maximum degree of a graph is the
maximum value among all degree measures in the graph.
Whereas the degree of a vertex is a local measure, the
maximum degree of a graph is a global measure. Almost
all standard graphical measures thus lend themselves to a
“weighted” version. Graph-theoretic measures such as
the maximum weighted-degree provide a rich source for
numerical characterizations for the mid-level graphs
which in turn are weights for the vertices of the top level
graph. By including the vertex weights, we show the
graph for the top level graph below generated by Cytos-
cape. Figure 2 is the wild type and Figure 3 is the mutant.
Substructure D4, where the mutation occurred, is high-
lighted together with the neighbors of D4. Notice that
there are significant structural changes predicted by
PhYre2, such as the loss of the edge connecting D1 with
D4. However, without the vertex weights, the change
would not be nearly as striking.

Using this approach, the effects of a single point
mutation on the entire protein can be observed. One
would expect that the vertex representing the substruc-
ture where the mutation occurred to be affected. How-
ever, other consequences can now also be observed,
such as the loss of the “heavy” cycle, D1, D4, D5, D9,
D13, D16. The differences and similarities between a
wild type protein and a given mutation of that protein
are difficult to discern in a model where each vertex
represents an amino acid. Without the hierarchical
structure, a change in a single amino acid (a single ver-
tex) may seem inconsequential, especially among the
hundreds of such changes possible. With the hierarchi-
cal structure, however, the influence of such mutations
can be tracked at each scale of representation.

Modelling mutations without a change in predicted
structure
Typically, the goal is to capture the top level impact of all
the mutations in a given residue sequence. Figure 4 illus-
trates the process for producing such visualizations without
utilizing a predicted change in the structure. In this
method, the edge set of the top level graph does not
change, only the vertex weights. One method for visualiz-
ing the effects in this case is to weight each edge {Di, Dj} in
the top level graph with the average value of the vertex
weights for Di and Dj. Subsequently, changes in descriptor
weights can imply changes in the minimum spanning tree
(s) of a top level graph. A spanning tree of a graph G is a
graph with the same vertex set of G with the minimum
number of edges that can be selected from the edge set of
G so that G remains connected. For a given connected

Figure 3 Top level graph with V51R. Cytoscape visualization parallel
to figure 2, with the V51R mutation, which occurs in D4. Applying the
same approach and weighting schemes to a different protein, here a
hypothetical protein mutant, we can see how the mutation affects the
interactions that are important in the wild-type protein.

Figure 4 The hydrophathy minimum spanning tree for the
scTIM. The edges of the top level graph (Figure 1) are weighted by
the sum of the respective vertex weights. Each vertex is weighted
by the maximum over the hydropathy weighted degrees of the
corresponding midlevel graph. The complete top level graph can
be filtered based on different properties of interest, here
hydropathy, to identify likely physical causes for mutation effects.
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graph G, if G is a tree, then it has only one spanning tree,
namely itself. Otherwise, if G is a connected graph that has
more edges than a tree, it may have many spanning trees.
When the edges are weighted, then the minimum spanning
tree is the spanning tree whose edge sum is minimal. The
famous Traveling Salesman Problem is an illustration of an
application of the minimum spanning tree concept.
Using different subsets of the mutations in the

sequence for dTIM we obtained different spanning trees,
although some vertices in the top level graph were highly
conserved across the collection of mutations. Figure 4
shows the minimum spanning tree of the top level graph
of scTIM, while Figure 5 shows the minimum spanning
tree for the all-mutations residue sequence dTIM. For
Figures 4 and 5, we used a descriptor based on hydropa-
thy [20]. In both cases, the minimum spanning tree is
unique. Figure 6 shows the mean (point) and standard
deviation (error bar) across a large number of mutation
resamplings, where a mutation resampling was a random
selection of mutations from the defective applied to the
wild type. Sample size and number of samples were cho-
sen so that each mutation was expected to occur 2.5
times. Figure 6 implies that the degrees of vertices D3,
D8, D9, D11, and D18 are unaffected by mutations,
whereas structure D4, D12, D17, and D19 are highly sen-
sitive to mutations in the residue sequence. Subsets of
the mutations allow individual structure to be studied
independently. For example, Figure 7 shows that if muta-
tions are allowed only in D3, then the minimum span-
ning tree is essentially that of the wild type graph. In
contrast, Figure 8 shows that if mutations are only
allowed in D9, then the minimum spanning tree is
altered.

Discussion
As the designers of this challenge intended, a problem
of great interest in the field of molecular biology and
biomedical science is how a single point mutation in
some instances can have virtually no effect on the struc-
ture and function of a protein while in other cases the
results can be disastrous. For example, a mutation in
the gene for the cystic fibrosis conductance transmem-
brane regulator causes the protein to misfold and be
tagged for degradation [21]. Consequently, people with
this mutation do not have this needed membrane pro-
tein in their epithelial cells and the result is the disease
Cystic Fibrosis. We note that for most people, the muta-
tion is a single point mutation, the deletion of phenyla-
lanine (F) at position 508. The protein has a total of

Figure 5 The hydropathy minimum spanning tree for dTIM.
Using the sequence dTim, the weighting scheme and descriptors
are the same as Figure 4. When the same minimum spanning tree
is produced for the structurally similar scTIM, it is clear that the
hydropathy-based interactions are significantly perturbed in the
mutant vs. the wild-type protein.

Figure 6 Top level vertex mean degree (point) with standard
deviation (error bar). Mean spanning tree vertex degrees across all
mutations and wild type. The top level vertices (midlevel
substructure graphs) corresponding to D3, D8, D9, D11, and D18 are
not changed by any of these mutations.

Figure 7 The minimum spanning tree with mutations in D3 only.
The spanning tree is the same as in Figure 4 (no mutations),
demonstrating that mutations in D3 do not change the minimum
spanning tree. Additional filtering can be applied to other features to
identify the differential localization of separate biophysical effects.
Comparing these results to Figure 4 for the wild-type suggests that D3
is not involved in the changes to the hydropathy spanning features.
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1482 residues and thus the absence of only one residue
out of the nearly 1500 residues has severe consequences.
Molecular dynamics has shown the deletion of F at 508
causes very little change at the local level [22], so there
must be some means by which this single deletion, i.e.,
a minor change at the local level percolates the entire
structure.
This is the idea behind the vertex-weighted hierarchical

graph model. A change at the amino acid level can be
quantified on the bottom level and relayed to the mid-
level by a change in vertex weights in the corresponding
midlevel graph. This change in turn results in a change in
the weights of the Top Level graph. The discussion about
CFTR is an illustrative example of the concept and not
meant to be restrictive. One could replace “deletion” with
“insertion” and the discussion would remain the same in
that the corresponding midlevel graph with the insertion
would change and consequently the vertex representing
that midlevel graph would receive a new set of descriptors,
i.e, new weights. In addition, biochemical properties asso-
ciated with the residues such as ss-stability and Vander
Waals are included as vertex weights for the amino acids.
For access to the IPython notebook and other materials,
the reader may contact the authors of the paper.

Conclusions
Not all graphical invariants are informative for every
graph. For example, the connectivity number provides no
discerning information on a set of trees since all trees
have connectivity number 2. In the same way, it should
be noted that not all descriptors can be used to infer the
impact of a mutation to the residue sequence. Proteins
vary widely in size and structure. Thus, in practice,

results and meaningful visualizations require a careful
selection and testing of candidate descriptors and vertex
weighting methods. The general model however can
always be applied. For each application, the size of the
structure, the types of the descriptors, and even the num-
ber of levels of the hierarchical graph must be deter-
mined by the modeller. In addition, the method only
works as good as the selected protein prediction software
when that software is used to determine the correspond-
ing mutant graph. Our focus here is on visualizing what
the software predicts so that, at a glance, one can observe
the global structural consequences of a mutation when
viewed through the lens of graph theory.
We now discuss some of the specifics in the methods

section.

Methods
We implemented the hierarchical modelling process as an
IPython notebook [23] running on the Python distribution
Anaconda 1.8. This implementation begins by reading in
protein three dimensional conformation data in the pdb
file format via the module biopython [24]. A single chain
in the pdb model must be selected, and then either all or
sections of the chain can be used to produce the hierarchi-
cal structure. In this way a connected graph is constructed
for each chain. These chain graphs can then be connected
by edges based on proximity if a protein has more than
one chain. Given that the contest designers only provided
mutations for one of the chains of TIM, our work was
restricted to that chain.
An atom-based contact map is used to generate the low-

est level graph. Measures for distances between residues
include Ca to Ca, between centroids, and between corre-
sponding centers of mass. Edges are weighted with the
number of contacts between two residues, and the distance
measures can be all-atom or restricted to side chains. In
addition to the pdb file, the notebook uses a file “AADe-
scriptorsRaw.csv” which contains a number of amino acid
descriptors and graph-theoretic measures. As described
earlier, we modify a number of the standard graph-theore-
tic measures to incorporate the vertex weights. In particu-
lar we find weighted upper domination, weighted lower
domination, weighted diameter, circumference, average
weighted degree, weighted periphery which we define by
generalizing standard graphical invariants. Additionally, we
use Plr, Chrg, Hydpthy, stablty, ss-stability, vanderWaal,
chargetransf, chargedonar, averhydrophocitiy, coilConfor-
mation, IsoElectric, Balaban index, RofGyr, ShapeIndex,
EIIP to be the most informative from a long list of highly
used amino acid indicies. Many of these can be found in
the Amino Acid Index Database [25].
Thus, the lowest level - the all atom level - is used

both to define the structure and the vertex properties of
the mid-level graph. A list of ranges defines the vertices

Figure 8 The minimum spanning tree with mutations only in
D9. Even though only those mutations from dTIM corresponding to
D9 are included, the mutations in D9 significantly alter the unique
minimum spanning tree. Selecting a different domain in which to
examine mutational effects shows that mutations in D9 affect the
hydropathy spanning tree much more than mutations in D3..
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(substructures) of the mid-level, contact-map generated
graphs. Each of these substructures are in turn the ver-
tices of the top level graph. Once again, edges are
defined by the contacts between the structures, with at
least two contacts between substructures necessary for
an edge in the top level graph. Also, the top level edges
are once again weighted by the number of contacts
between the substructures (which are the vertices of the
top level graph.)
Graph based descriptors are defined for the substruc-

ture graphs Di and for the top level graph. For example,
the maximum generalized degree of a substructure graph
is the largest vertex weighted degree corresponding to a
given amino acid descriptor. The vertex weighted degree
over a given descriptor is the sum of the descriptor values
over the neighborhood of that vertex. A substructure-
wide descriptor thus provides vertex weights for the ver-
tices in a top level graph, and these vertex weights can be
used to infer properties of the top level graph. The result
can be exported to graphml as a vertex weighted graph,
after which a visualization tool such as Cytoscape can be
used to visualize the impact of sequence level changes on
the top level graph of a protein.
There are numerous way to quantify structural aspects

of a graph and these quantities are typically called graphi-
cal invariants in graph theory. For example, if the edges of
the graph are weighted, then the minimum weight of a
spanning tree is a quantity that is well known and highly
studied. Thus, we use the vertex weights to determine a
corresponding scheme for edge weights and then utilize
the fact that there exist algorithms to find the minimum
spanning trees of (edge) weighted graphs. The minimum
weight among all spanning trees is just one of many ways
to quantify a graph and these are the quantities that can
then be drawn upon as vertex weights for the next level
up the hierarchy, or used as part of the final quantification
of the graph if one is calculating the minimum spanning
tree of the top level graph. We have explored a number of
graphical invariants from graph theory and molecular
descriptors from computational chemistry. This work
illustrates the concept and utility of the vertex-weighted
hierarchical graph as an effective modelling and visualiza-
tion tool for the investigation of the consequences of a
mutation.
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