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Abstract

Background: Genomic prediction is now widely recognized as an efficient, cost-effective and theoretically well-
founded method for estimating breeding values using molecular markers spread over the whole genome. The
prediction problem entails estimating the effects of all genes or chromosomal segments simultaneously and
aggregating them to yield the predicted total genomic breeding value. Many potential methods for genomic
prediction exist but have widely different relative computational costs, complexity and ease of implementation,
with significant repercussions for predictive accuracy. We empirically evaluate the predictive performance of several
contending regularization methods, designed to accommodate grouping of markers, using three synthetic traits of
known accuracy.

Methods: Each of the competitor methods was used to estimate predictive accuracy for each of the three
quantitative traits. The traits and an associated genome comprising five chromosomes with 10000 biallelic Single
Nucleotide Polymorphic (SNP)-marker loci were simulated for the QTL-MAS 2012 workshop. The models were
trained on 3000 phenotyped and genotyped individuals and used to predict genomic breeding values for
1020 unphenotyped individuals. Accuracy was expressed as the Pearson correlation between the simulated true
and the estimated breeding values.

Results: All the methods produced accurate estimates of genomic breeding values. Grouping of markers did not
clearly improve accuracy contrary to expectation. Selecting the penalty parameter with replicated 10-fold cross
validation often gave better accuracy than using information theoretic criteria.

Conclusions: All the regularization methods considered produced satisfactory predictive accuracies for most
practical purposes and thus deserve serious consideration in genomic prediction research and practice. Grouping
markers did not enhance predictive accuracy for the synthetic data set considered. But other more sophisticated
grouping schemes could potentially enhance accuracy. Using cross validation to select the penalty parameters for
the methods often yielded more accurate estimates of predictive accuracy than using information theoretic criteria.
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Background
Genomic prediction[1]is a method for predicting geno-
mic breeding values for non-phenotyped individuals
using molecular marker information covering the whole
genome (e.g., Single Nucleotide Polymorphism, SNP)
and observed phenotypic data from training populations.
In essence, it involves a multiple regression of phenoty-
pic observations on markers (SNP). The number of mar-
kers

(
p
)
typically runs into thousands and often far

exceeds the number of phenotypes (n), leading to the
classic p � n problem. The enormous number of mar-
kers involved in genomic prediction makes regulariza-
tion methods particularly attractive and convenient tools
for addressing the twin problems of selection of impor-
tant markers and multicollinearity in the high dimen-
sional regressions. In particular, the high dimensional
nature of high-throughput SNP-marker data sets has
prompted increasing use of the power and versatility of
regularization methods in genomic selection to simulta-
neously select important markers and account for multi-
collinearity. Regularized (penalized) regression methods
commonly used in genomic prediction include ridge [2],
lasso (least absolute shrinkage and selection operator)
[3], elastic net [4]and bridge [5]regression and their
extensions [6,7].
These methods are not explicitly designed to exploit

information on potential grouping structure among
markers, such as that arising from the association of
markers with particular Quantitative Trait Loci (QTL)
on a chromosome or haplotype blocks, to enhance the
accuracy of genomic prediction. The nearby SNP mar-
kers in such groups are linked, yielding highly correlated
predictors. If such group structure is present but is
ignored by using models that select individual predictors
only, then such models may be inefficient or even inap-
propriate, leading to low accuracy of genomic predic-
tion. Here, we explore if the accuracy of genomic
prediction can be enhanced by explicitly accounting for
potential grouping of SNP markers and using regulariza-
tion methods with grouped penalties specifically
designed to enable group selection. The predictive per-
formances of the grouped methods are compared
among the methods themselves and with those for cor-
responding but ungrouped variant of each method.

Methods
Linear regression model
Consider the linear regression model

yi = β0 +
∑p

j=1
βjxij + ∈i, i = 1, 2, . . . , n (1)

where yi is the ith observation of the response variable,
xij is the ith observation on the jth covariate, βj are the

regression coefficients and ∈i are i.i.d. random error
terms with var(∈) = Iσ 2

e , where ∈ is the vector of n errors
∈i and I is an n-dimensional identity matrix. In what
follows we assume, without loss of generality, that the
response and the covariates in (1) are mean-centered and

standardized so that β0 = 0,
∑n

i=1
yi = 0,

∑n

i=1
xij = 0 and∑n

i=1
x2ij = 1[8]. In genomic prediction we are interested

in estimating the p regression coefficients βj which may
be very many and many βj may be zero.

Regularization methods
All regularized regression methods estimate the vector
of regression coefficients β in (1) by minimizing an
objective function F composed of the sum of a loss
function (e.g. the squared error loss=Residual Sum of
Squares (RSS)) and a penalty function:

Fλ, γ (β) =
argmin

β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n

i=1

(
yi −

∑p

j=1
βjxij

)2

︸ ︷︷ ︸
Loss Function=RSS

+
∑p

j=1
pλ,γ (βj)︸ ︷︷ ︸

Penalty function

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2)

where pλ ,γ (.) is a function of the vector of coefficients

β =
(
β1,β2, . . . ,βp

)T and the tuning(penalty) parameter

λ > 0 controls the tradeoff between minimizing the loss
and the penalty terms. γ > 0 is a shrinkage parameter
that determines the order of the penalty function. Mini-
mizing (2) yields a spectrum of solutions depending on
the value of λ.
The gradient (first derivative) of a penalty function

determines how it affects the solution in (2). To see this
for bridge regression, consider the first derivative or rate
of penalization of penalties of the form pλ ,γ (β) = λβγ

with respect to β, where β is a scalar. In ridge regression
(γ = 2), the rate of penalization p′

λ,γ (β) = 2λβ increases
with β, implying little or no penalization is applied
when β is near 0 but strong penalization is applied
when β is large. In lasso regression (γ = 1), the rate of
penalization P′

λ,γ (β) = λ is constant. In bridge regression

(e.g., γ = 1/2), the rate of penalization p′
λ,γ (β) = λ/2

√
β

is very high for values of β near zero but declines
rapidly as β becomes large.
We consider the eight different regularized regression

methods in turn below.

Bridge regression
Bridge regression minimizes the penalized least squares
objective function [5,9]

Bridgeλ(β) =
argmin

β

{
RSS + λ

∑p

j=1

∣∣βj
∣∣γ }

, (3)

where p, βj and λ > 0 and γ > 0 are defined as in (2).
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The optimal combination of λ and γ can be selected
adaptively from the data by grid search using cross-
validation. The bridge estimator is the value of β̂ that
minimizes (1) for any given γ > 0 [5,9]. The bridge esti-
mator can do automatic variable selection since some
coefficients become exactly zero when 0 < γ ≤ 1 and λ

is sufficiently large. For 0 < γ < 1, a finite number of
covariates and under appropriate regularity conditions,
the bridge estimator (i) is consistent and (ii) can distin-
guish between covariates whose coefficients are exactly
zero and covariates with nonzero coefficients in sparse
high-dimensional settings [10].
[8]extended the results of [10] to infinite dimensional

parameter settings (i.e. p → ∞ as n → ∞) and showed
that the bridge estimator (iii) is selection consistent for
any γ > 0 and (iv) has the oracle property when
0 < γ < 1.The oracle property means that:[11,12];
(a) the bridge estimator correctly selects the nonzero
coefficients with probability converging to 1 (i.e. with
near certainty) and that (b) the bridge estimators of the
nonzero coefficients are asymptotically normal with the
same means and covariances that they would have if the
zero coefficients were known in advance. The bridge
estimator subsumes three important special cases. When
(v) γ = 0 the bridge estimator (2) simplifies to the ordin-
ary least squares estimator (subset selection). (vi) When
γ = 1 the bridge estimator (2) reduces to the lasso esti-
mator, which was introduced as a variable selection and
shrinkage method [3].

Lasso(β) =
argmin

β

{
RSS + λ

∑p

j=1

∣∣βj
∣∣} 0. (4)

(vii) When γ = 2 the bridge estimator (3) simplifies to
the ridge estimator (5) [1,13-15]

Ridge(β) =
argmin

β

{
RSS + λ

∑p

j=1
β2
j

}
(5)

(viii) Since some components of the bridge estimator
can be exactly zero when 0 < γ < 1 and λ is sufficiently
large, the bridge estimator can simultaneously estimate
parameters and select variables in one step. (ix) The
bridge estimator can adaptively select the penalty order
(γ ) from the data and produce flexible solutions in a
range of settings. (x) Bridge estimators have demon-
strated robust performance in various settings relative to
other penalized regression methods, including the popu-
larly used ridge regression, lasso and the elastic net [8].
For example, the bridge estimator correctly identifies
zero coefficients with higher probability than do the
lasso and elastic net estimators based on simulation
results [8].

MCP
The minimax concave penalty (MCP) is defined on
[0, ∞)[16] as

pλ ,γ (β) =

⎧⎪⎨
⎪⎩

λβ − β2

2γ
, if β ≤ γ λ,

1
2

γ λ2, if β > γλ

⎫⎪⎬
⎪⎭ (6)

where λ ≥ 0 and γ > 0. The expression for pλ,γ (.)
shows that MCP initially applies the same rate of penali-
zation as the lasso does but continuously reduces the
rate of penalization until the rate becomes 0 when
β > γλ.
The MCP [17] is motivated by and is very similar to

the smoothly clipped absolute deviation (SCAD, [11])
penalty function. The gradient of the SCAD penalty is
given by [11]

p′
λ,γ (β) = I (β ≤ λ) +

(γ λ − β)+

(γ − 1) λ
I (β > λ) for some γ > 2 and β > 0 (7)

This gradient function corresponds to a quadratic
spline function with knots at λ and γ λ. The penalty
functions for both MCP and SCAD are concave or non-
convex. Both MCP and SCAD aim to eliminate the
unimportant predictors from the model while leaving
the important predictors unpenalized. This is equivalent
to fitting an unpenalized model in which the truly non-
zero predictors are known beforehand (i.e. the ‘oracle
property’). MCP and SCAD are thus asymptotically ora-
cle-efficient [11,17]. Accordingly, as n → ∞, they select
the correct regression model with probability tending to
one and the non-zero coefficient estimates are asympto-
tically normal and have the same covariance matrix as if
they were known in advance [11,18,19]. MCP performs
well when there are many rather sparse groups of pre-
dictors, i.e., when the underlying model exhibits less
grouping of predictors. MCP suffers when the non-zero
coefficients are clustered into tight groups because it
tends to select too few groups and makes insufficient
use of the grouping information. SCAD has weaker
grouping behaviour than the MCP [21]

Group bridge, group lasso, sparse group lasso and group
MCP methods
All the four grouped methods select the important
groups of covariates. Group bridge, sparse group lasso
and group MCP perform bi-level selection because they
also identify the important members of each group
[20,21]. Bi-level selection is appropriate if predictors are
not distinct but have common underlying grouping
structure. Bi-level selection differs from simple group
selection in that in bi-level selection, variable selection
is carried out at the group level and at the level of the
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individual covariates, resulting in the selection of impor-
tant groups as well as members of those groups. But in
group selection, only relevant groups are selected so
that the estimated coefficients within each group will be
either all zero or all nonzero.
The group bridge, sparse group lasso and group MCP

penalties combine two nested penalties to enable
bi-level selection.

Group bridge
The group bridge estimator is [22,23]

gBridgeλ(β) =
argmin

β

{
RSS + λ

∑L

l=1
Cl

∥∥βAl

∥∥γ

1

}
(8)

where A1, . . . ,AL are subsets of the set
{
1, . . . , p

}
indexed by l = 1, . . . , L and represent known groupings

of the covariates, βAl =
(
βj, j ∈ Al

)T are the regression

coefficients in the l-th group.λ > 0 is the penalty para-
meter and cl ≥ 0 are constants that adjust the different
dimensions of βAl and assign different weights to the dif-
ferent coefficients. A simple choice of cl is cl ∝ |Al|1−γ

where |Al| is the cardinality of Al (the length or number
of unique elements in the set Al). The group bridge pen-
alty combines two penalties, namely the bridge penalty
for group selection and the lasso penalty for within-
group selection. The bridge penalty is applied on the L1-
norms of the grouped coefficients in (8). The objective
criterion (8) reduces to the standard bridge criterion (3)
when |Al| = 1 and 1 ≤ l ≤ L.

Group lasso
The group lasso selects groups of variables but does not
select individual variables within groups. The group
lasso estimator is [22]

gLasso (β) =
argmin

β

{
RSS +

∑L

l=1

∥∥βAl

∥∥
Kl,2

}
(9)

in which Al and βAl(l = 1, . . . , L) are defined as in (8), Kl

is a positive definite matrix and ∥∥βAl

∥∥
Kl,2

=
(
βT
Al
KlβAl

)1
2.

[24] suggest using Kl = |Al| Il, where |Al| is the cardinality
of Al and Il is the |Al| × |Al| identity matrix.
The reason that gLasso selects groups but not indivi-

dual variables is made clearer by re-expressing (9) as [22]

S (β ,ω) = RSS +
∑L

l
ω−1
l

∥∥βAl

∥∥2
Kl,2

+ ν
∑L

l
ωl (10)

Then minimizing S (β ,ω) subject to ω ≥ 0 for some
suitably chosen constant ω̃ ≥ 0 yields gLasso (β) in
model (10) for appropriately chosen ν.

The objective criterion (10) reveals that gLasso behaves
very much like an “adaptively weighted ridge regression”
in which (i) the sum of the squared coefficients in group
l is penalized by ωl, and (ii) the sum of the ωl’s is further
penalized by ν. If βAl = 0 when model (10) is minimized
then group l is dropped from the model. But if βAl �= 0
then all the elements of βAl are nonzero and all the vari-
ables in group l are retained in the model [22].
Equivalently, the group lasso penalty can also be

written as [25]

gLasso (β) =
argmin

β

{
RSS +

∑m

l=1

√
pl‖βl‖2

}
(11)

where the loss (RSS) is computed using only observa-
tions of covariates in the submatrix of the matrix of all
covariates with columns corresponding to covariates in
group l, βl is the coefficient vector of that group and pl
is the cardinality or length of βl. The

√
pl terms account

for the varying group sizes and ‖.‖2 is the Euclidean
norm (not squared).
The group lasso estimator is asymptotically consistent

even when model complexity increases with increasing
sample size [26]. If only one variable is contained in
each group then the objective function (9) simplifies to
that of the usual lasso solution. gLasso penalizes the
grouped coefficients much like the lasso does because it
uses the same tuning parameter for all groups and
hence suffers from estimation inefficiency and variable
selection inconsistency. The adaptive group lasso reme-
dies these shortcomings by applying different tuning
parameters and hence different amounts of shrinkage to
the grouped coefficients [27] much as the adaptive lasso
does to individual covariates [18]. But the adaptive
group lasso does not accomplish bi-level selection[28].
The group lasso over-shrinks individual coefficients
when groups are sparsely populated.

Sparse group lasso
The sparse group lasso ([25,29,30] also performs group-
wise and within-group variable selection. The sparse
group lasso penalty blends the lasso and group lasso
penalties ([25,31]:

SgLasso (β) =
argmin

β

{
RSS + (1 − α) λ

∑L
l=1

√
pl‖βl‖2 + αλ

∑pl
l=1 |β|

}
(12)

where β is the full parameter vector, α ∈ [0, 1]. Setting
α = 0 produces the lasso fit whereas α = 1 yields the
group lasso solution.

Group MCP
The group MCP estimate minimizes [20,21]

MCP (β) =
argmin

β

{
RSS +

∑L
l=1 ρλ,b

(∑pl
j=1 ρλ,a

(∣∣βlj
∣∣))}

(13)
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where ρ is the MCP penalty (6), the tuning parameter
of the outer penalty, b, is chosen to be plaλ/2 to ensure
that the group level penalty attains its maximum if and
only if all of its components are at their maxima, pl is
the size of group l,l = 1,...,L groups and λ ≥ 0.
The group MCP therefore also combines two penalties

to achieve bi-level, i.e., group and within- group variable
selection. All the methods with grouped penalties make
inflexible grouping assumptions that can undermine
their performance when groups are misspecified or spar-
sely represented [20]. SCAD displays less grouping than
group MCP and is thus expected to be less suited to
grouped variable selection problems.

Data set
An outbred population was simulated for the 16th

QTLMAS Workshop 2012. The simulation involved
generating a base population (G0) of 1020 unrelated
individuals (20 males and 1000 females) with a genome
comprising 5 chromosomes, each having 2000 equally
distributed SNPs. Each of the subsequent four non-over-
lapping generations (G1-G4) consisted of 20 males and
1000 females and was generated from the previous one
by randomly mating each male with 51 females. Three
milk production quantitative traits all of which express
only in females were simulated. The traits were corre-
lated and generated to mimic two yields and the corre-
sponding content. Thus, the phenotypes, given as
individual yield deviations, are only for the 3,000 females
from G1 to G3. Young individuals (G4: individuals 3081
to 4100) have no phenotypic records. The pedigree of
4100 individuals, including the individual identity, sire,
dam, sex and generation were provided as were the SNP
genotypes for the 4100 individuals and the location of
SNPs on each chromosome. Two alleles were given for
each SNP. The marker information was coded as 1 for
alleles A1A1, -1 for A2A2 and 0 for A1A2, or A2A1 and
stored in a matrix X = {xik}, where xik is the marker cov-
ariate for the ith genotype (i = 1, . . . ,G) and the kth
marker

(
k = 1, 2, . . . , p

)
. Monomorphic markers (n = 31)

were identified and deleted prior to analysis, resulting in
10000-31 = 9969 markers. Here, we address only the
second aim of the challenge which is to predict genomic
breeding values for the 1020 unphenotyped progenies
using the available genomic information.
Grouping SNP markers for the grouped methods
To enable model fitting for the grouped methods we
formed groups of the markers by assigning consecutive
SNP markers systematically to groups of sizes 1, 10,
20,...,100 separately for each of the five chromosomes.
This often resulted in the last group having fewer SNPs
than the actual prescribed group size. The total number

of all groups of sizes 1, 10, 20,...,100 were 9969, 978,
490,...,100.

Model fitting and selection
All the models were fit in R. Group lasso, group bridge,
group MCP, and group SCAD models were fitted by the R
packages grpreg. For each model and group size combina-
tion, the optimal value of λ was selected by computing
solutions along a grid of 100 λ values spaced evenly on the
log scale following the approach of [31]. The value of γ

was fixed at its recommended default value in gpreg to
reduce computing time to manageable levels. The Akaike
(AIC) and Schwarz Bayesian (BIC) Information Criteria
were used to select the optimal value of the penalty para-
meter λ along the regularization path from the set of the
100 λ values for each model and group size combination
[20]. The models with the selected best values for λ for
each group size were used to predict genomic breeding
values for the 1020 unphenotyped genotypes. Pearson cor-
relation between the predicted and true genomic breeding
values was used to assess predictive accuracy. MCP and
SCAD were also fitted to the ungrouped data using the R
package ncvreg and the optimal value of λ similarly
selected from 100 values using 10-fold cross-validation.
The 10-fold cross-validation involved partitioning the
3000 observations into 10 equal parts and estimating the
prediction error in each set by using the observations in
the other 9 sets to fit each of the models and predict the
tenth part. Lastly, ridge regression was fitted to the
ungrouped data in the R package glmnet net using 10-fold
cross-validation.

Results
The predictive accuracies attained by all the methods
were mostly high. Although it improved prediction
accuracy, overall grouping was not associated with a
consistent increase in predictive accuracy (Tables 1 to
3). Nevertheless, the method used to select the penalty
parameter (λ) often had a discernible impact on the
accuracies of the regularization methods. The group
bridge, group lasso and group MCP tended to produce
better prediction accuracies with tuning parameters
selected by AIC than by BIC. The sparse group lasso
produced somewhat more accurate estimates than all
the other methods for all the three synthetic traits. The
best estimates of predictive accuracy for traits 2 and 3
were often slightly higher than the corresponding esti-
mates for trait 1 (Tables 1 to 3). Results based on an
alternative grouping of markers using K-means cluster-
ing (K = 10, results not shown) largely reproduced those
for the systematic grouping and hence are omitted for
the sake of brevity.

Ogutu and Piepho BMC Proceedings 2014, 8(Suppl 5):S7
http://www.biomedcentral.com/1753-6561/8/S5/S7

Page 5 of 9



Discussion
All the regularization methods produced consistent and
relatively high estimates of predictive accuracy for all the
three synthetic traits. The accuracies of all the estimates
are such that each could potentially provide a firm basis
for making practical selection decisions. Predictive accu-
racy varied with the method used to select the tuning or
penalty parameter. There was some evidence that the
group bridge, lasso, MCP and SCAD methods tended to
produce somewhat more accurate estimates of predictive
accuracy when the tuning parameter was selected by AIC
than by BIC. This reinforces the suggestion of [32] that
AIC-type criteria are often more appropriate if a model is
used for prediction whereas BIC-type criteria are better
suited for uncovering the true underlying model. Even so,
the estimated predictive accuracy was sometimes decid-
edly higher when the tuning parameter was selected by
10-fold cross validation than by either of the information
theoretic criteria. [33] recommend running cross-valida-
tion multiple times to obtain reliable results when small
signals are expected. Accordingly, we ran the 10-fold
cross validation 100 times, once for each of the 100
values of the tuning parameter for the grouped bridge,
lasso, MCP and SCAD methods. For the sparse group
lasso we replicated the 10-fold cross validation 20 times,
once for each value of the tuning parameter. The
observed improvement in predictive accuracy in some
cases when using cross validation to select the penalty
parameter is thus consistent with most of the markers
having small signals.
There was no compelling evidence that grouping SNP

markers consistently improved predictive accuracy for
these data. This could mean either that the simulated
SNP markers were not strongly correlated or that they
indeed were but the simple systematic or K-means

clustering grouping methods failed to accurately capture
the underlying grouping structure. If the lack of clear
improvement in performance is due to failure to accu-
rately account for the underlying grouping structure
then, assuming an accurate map information is available
for each chromosome, using spatial clustering methods
such as K-spatial clustering that partitions the genomic
or chromosomal region into disjoint and contiguous
intervals, subject to the constraint that SNPs in each
group are spatially adjacent, and tagging these intervals
with cluster numbers (1, 2,..., K), could potentially
improve performance. If adjacent SNP markers are not
independent, contrary to the assumption made by most
common clustering frameworks, then spatial clustering
should be more informative and more powerful than
simple clustering of markers. A standard clustering pro-
cedure like K-means should perform poorly if markers
are correlated because it ignores the genomic layout of
the data and considers only the similarity of the SNP
markers per loci. The grouped methods will also per-
form sub-optimally if the underlying grouping structure
is too complex to accurately capture with simple clus-
tering algorithms, including spatial clustering of groups.
Such complexity may originate, for example, from over-
lapping of groups caused by SNPs linked to multiple
QTLs.
The grouped methods we consider are not well suited

to handling overlapping groups by construction. Exten-
sions of the grouped methods would thus be needed to
efficiently accommodate complications associated with
overlapping groups. Existing extensions of the grouped
methods designed to solve this type of complication
include the overlapping group lasso that allows overlaps
between groups of covariates. Some covariates are
allowed to occur in more than one group but each time

Table 1 Pearson correlation between the true and predicted genomic breeding values for group bridge, MCP, lasso
and SCAD for trait T1 based on systematic groups.

Group size Penalty selected by AIC Penalty selected by BIC

Bridge MCP Lasso SCAD SGLasso Bridge MCP Lasso SCAD

1 0.682 0.758 0.778 0.767 0.781 0.682 0.768 0.773 0.652

10 0.770 0.759 0.793 0.788 0.787 0.753 0.772 0.747 0.735

20 0.774 0.761 0.788 0.770 0.787 0.777 0.772 0.756 0.667

30 0.758 0.760 0.790 0.774 0.787 0.787 0.771 0.753 0.644

40 0.769 0.761 0.789 0.758 0.787 0.771 0.772 0.754 0.595

50 0.774 0.761 0.780 0.740 0.791 0.763 0.770 0.732 0.579

60 0.765 0.760 0.784 0.750 0.791 0.765 0.771 0.706 0.581

70 0.771 0.760 0.779 0.760 0.789 0.757 0.770 0.718 0.619

80 0.781 0.761 0.776 0.759 0.795 0.747 0.770 0.721 0.550

90 0.761 0.760 0.774 0.748 0.781 0.743 0.770 0.709 0.478

100 0.771 0.760 0.778 0.706 0.790 0.760 0.770 0.704 0.502

Although listed under AIC, SGLasso used only 10-fold cross validation. The Pearson correlation for ridge regression for comparison is 0.737.
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a covariate occurs in one group it gets a new coefficient
[34,35]. This makes it possible to select one variable
without selecting all the groups containing it. A related
extension is the hierarchical (overlapped) group lasso
that incorporates both main effects and interactions that
obey weak or strong hierarchy (nesting) patterns
[36-38]. To check if allowing for overlap among groups
indeed improved predictive accuracy, we fitted the hier-
archical group lasso model in the glinternet package in
R and used10-fold cross-validation to select the optimal
λ value from a set of 50 values [38]. The estimated pre-
dictive accuracies of 0.759, 0.815 and 0.791 for traits 1,
2 and 3, respectively, showed that using overlapping
groups did not improve accuracy relative to using non
overlapping groups. Other extensions of the grouped
methods applicable in slightly different settings include

the group lasso for logistic regression [39], generalized
linear models [40] and nonparametric models [41].
Although the performance of the different methods

did not differ dramatically for these data the methods
often differed with respect to their relative computa-
tional efficiencies. Other studies that have compared the
performance of the group lasso with other grouped
methods, for example, have also found similar results
and more. In particular, [24] evaluated the performance
of the group lasso relative to group Lars and group
non-negative garrote. They found that the group lasso
was the slowest of the three group methods because its
solution path is not piecewise linear and hence requires
intensive computations in large scale problems. The
group Lars had comparable performance to the group
lasso but was faster because its solution path is piecewise

Table 2 Pearson correlation between the true and predicted genomic breeding values for group bridge, MCP, lasso
and SCAD for trait T2 based on systematic groups.

Group size Penalty selected by AIC Penalty selected by BIC

Bridge MCP Lasso SCAD SGLasso Bridge MCP Lasso SCAD

1 0.756 0.790 0.826 0.810 0.841 0.828 0.837 0.827 0.795

10 0.779 0.809 0.852 0.840 0.845 0.819 0.839 0.813 0.776

20 0.762 0.809 0.844 0.833 0.845 0.818 0.838 0.779 0.780

30 0.758 0.809 0.836 0.827 0.845 0.801 0.838 0.765 0.744

40 0.710 0.810 0.818 0.788 0.845 0.790 0.838 0.735 0.688

50 0.714 0.809 0.827 0.808 0.846 0.807 0.837 0.746 0.697

60 0.708 0.808 0.810 0.804 0.843 0.810 0.837 0.738 0.708

70 0.700 0.809 0.806 0.804 0.843 0.789 0.837 0.731 0.680

80 0.702 0.809 0.811 0.800 0.844 0.790 0.837 0.735 0.641

90 0.669 0.808 0.795 0.793 0.848 0.785 0.837 0.714 0.607

100 0.704 0.808 0.803 0.792 0.841 0.798 0.837 0.808 0.632

Although listed under AIC, SGLasso used only 10-fold cross validation. The Pearson correlation for ridge regression for comparison is 0.772.

Table 3 Pearson correlation between the true and predicted genomic breeding values for group bridge, MCP, lasso
and SCAD for trait T3 based on systematic groups.

Group size Penalty selected by AIC Penalty selected by BIC

Bridge MCP Lasso SCAD SGLasso Bridge MCP Lasso SCAD

1 0.811 0.818 0.818 0.796 0.807 0.812 0.813 0.814 0.716

10 0.742 0.818 0.835 0.816 0.814 0.742 0.813 0.776 0.763

20 0.776 0.818 0.814 0.794 0.814 0.766 0.813 0.742 0.735

30 0.801 0.818 0.818 0.818 0.814 0.791 0.813 0.742 0.742

40 0.812 0.818 0.804 0.797 0.814 0.790 0.813 0.725 0.725

50 0.809 0.817 0.814 0.818 0.816 0.801 0.813 0.716 0.716

60 0.825 0.817 0.802 0.813 0.817 0.808 0.813 0.712 0.712

70 0.822 0.816 0.806 0.816 0.815 0.806 0.813 0.710 0.710

80 0.824 0.816 0.795 0.788 0.816 0.807 0.813 0.686 0.686

90 0.803 0.818 0.793 0.776 0.816 0.817 0.813 0.665 0.598

100 0.820 0.817 0.791 0.764 0.797 0.760 0.813 0.776 0.665

Although listed under AIC, SGLasso used only 10-fold cross validation. The Pearson correlation for ridge regression for comparison is 0.762.
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linear [24]. The group non-negative garrote cannot be
directly applied to problems in which the total number of
covariates exceeds the sample size because it depends
explicitly on the full least squares estimates [24].

Conclusions
All the methods produced relatively high estimates of
predictive accuracy and hence can be used in genomic
prediction research and practice. Systematic grouping or
conventional K-means clustering of markers did not
lead to any noticeable improvement in predictive accu-
racy. The grouped methods may yield better predictions
with more sophisticated clustering approaches such as
K-means spatial clustering which therefore deserve con-
sideration in future studies. Whenever possible, the
selection of the penalty parameter for the regularization
methods should be done using replicated cross-valida-
tion to enhance accuracy of estimates. Nevertheless,
selecting the penalty parameter using information theo-
retic criteria such as AIC and BIC may occasionally
yield better estimates than cross-validation.
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