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Abstract

increased surveillance.

influential clades out of 130 clades in the phylogram.

candidates for increased surveillance.

Background: Intercontinental migratory waterfow! are the primary vectors for dispersion of H5N1 viruses and have
been implicated in several zoonotic epidemics and pandemics. Recent investigations have established that with a
single mutation, the virus gains the ability to transmit between humans. Consequently, there is a heightened
urgency to identify innovative approaches to proactively mitigate emergent epidemics. Accordingly, a novel
methodology combining temporo-geospatial epidemiology and phylogeographic analysis of viral strains is
proposed to identify critical epicenters and epidemic pathways along with high risk candidate regions for

Results: Epidemiological analysis was used to identify 91,245 candidate global infection transmission pathways
between 22 high risk waterfowl species. Dominant infection pathways (25,625 and 54,500 in summering and
wintering zones) were identified through annotation using phylogeographical data computed from the phylogram
of 2417 H5N1 HA isolates (from GISAID EpiFlu database). Annotation of infection pathways in turn delineated 23

Conclusions: The phylogeographic analyses provides strong cross-validation of epidemic pathways and identifies
the dominant pathways for use in other epidemiological and prophylactic studies. The temporo-geospatial
characteristics of infection transmission provides corroborating, but novel evidence for rapid genesis of H5N1
lineages in S.E. Asia. The proposed method pinpoints several regions, particularly in the southern hemisphere, as

Background

Humanity continues to face a multitude of global socioeco-
nomic challenges due to annual epidemics and punctuated
pandemics of highly virulent zoonoses such as avian
influenza (H5N1, H7N9) and the 2009 swine flu (H1N1)
pandemic [1,2]. The 2009 swine flu (HIN1) pandemic
virus involved segments from avian serotype [1]. Highly
Pathogenic Avian Influenza (HPAI) virus are routinely
transmitted to humans in several parts of the world as
reported by the World Health Organization (WHO) [3]
(see figure in supplementary material), including a recent
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case in Canada [4], with an alarming 60% mortality rate [5].
Moreover, the disease is of global importance because low
pathogenic forms of the viruses cause billions of dollars of
annual losses due to recurrent epidemics in poultry [5,6].

Ecology of avian influenza: need for analysis of migratory
waterfowl

The global ecology of avian influenza, is summarized in
Figure 1 along with various polymorphic strains. It has
been established that migratory waterfowl, especially
anseriformes and charadrillformes, play a central role in
the global ecology [7,8]. Moreover, migratory waterfowl
have been implicated as natural reservoirs, mixing vessels,
and intercontinental vectors for various serotypes of avian
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Figure 1 Overview of global ecology of Avian Influenza Viral serotypes, hosts, and vectors are shown.
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viruses [8]. Unfortunately, knowledge on global spread of
H5NT1 is rather limited [9] with ongoing debates regarding
its transmission pathways [8,10].

Although past outbreaks have been sporadic and unsus-
tained, several recent investigations have established that
with just one mutation the H5N1 virus gains the ability to
be readily transmitted between humans and a global pan-
demic is imminent [11]. Consequently, there is heightened
urgency to shift the focus of investigations from studying
possibilities to analyzing probabilities of outbreaks to
proactively mitigate or even preempt emergent pandemics
[12] in contrast to delayed responses to the 2009 HIN1
pandemic as discussed in the report by the executive office
of the president of the United States [13]. Accordingly,
several multinational surveillance efforts have been
initiated to collate data on various characteristics of migra-
tory species [8]. The surveillance efforts include: large
scale satellite tracking, banding and tracking of individual
birds in conjunction with satellite telemetry, and various
biological sampling and cataloging efforts [8].

SEARUMS: ecological and epidemiological modeling and
analysis system

Despite the advancements in technologies and improve-
ments in economies of scale, data from surveillance is

relatively coarse and sparse. Furthermore, field observa-
tions and satellite telemetry only provide a snapshot of
various natural processes that influence global ecology
of the disease. Furthermore, comprehensive epidemiolo-
gical analysis using effective computational models play
a pivotal role in design and implementation of national
and multinational prophylactic strategies and policies.
Consequently, the surveillance data needs to be combined
with computational analysis methods to generate compre-
hensive, multifaceted information and draw actionable
inferences. However, a versatile and comprehensive soft-
ware system is required to enable and the aforementioned
computational analyses.

Accordingly, a ecological and epidemiological analysis
environment called SEARUMS [14] (http://www.searums.
org/) has been developed and is used in this investigation.
The biomathematical models for temporo-geospatial
epidemiological analysis supplied to SEARUMS are called
Eco-descriptions. The software pipeline includes modules
for generating Eco-descriptions from Geographic Informa-
tion Systems (GIS) datasets that has been used in this
study (refer to Methods section for details). SEARUMS
uses an agent-based descriptive behavioral computational-
modeling approach [15] to elicit epidemiological charac-
teristics [14]. The agents in SEARUMS implement the


http://www.searums.org/
http://www.searums.org/

Rao BMC Proceedings 2014, 8(Suppl 6):S1
http://www.biomedcentral.com/1753-6561/8/56/51

classical bio-mathematical compartmental models that are
widely used in epidemiology [16]. In a compartmentalized
model the population being analyzed is partitioned into
non-intersecting subsets called compartments. Compart-
ments are defined such that the sub-population within a
compartment exhibits a vital disease characteristic, such
as: Susceptible (S), Exposed (E), Infected (I), and Recov-
ered (R). The epidemiological characteristics of the classi-
cal SEIR model is modeled using the following system of
differential equations:

dS/dt = uN — [x + ]S(t)
dE/dt = AS(t) — (B + n)E(t)

dljdt = BE(t) — (v + w)I(t)
dR/dt = vI(t) — pR(t)

The constants y, A, 8, and v represent the birth/death
rate, the force of infection, latency period, and recover
rates respectively. These constants are determined based
on the characteristics of the disease being modeled and
are supplied via the Ecodescription. In SEARUMS
spread of infection to various agents occurs when agents
overlap with each other. The system is modeled as dis-
crete time Markov processes driven by an underlying
multi-threaded Discrete Event Simulation (DES) kernel.
Various phenomena that occur during simulation are
logged for further analysis. A more detailed description
of SEARUMS is available in the literature [14].

Methods

The focus of this study is to utilize phylogeographic analy-
sis of H5N1 viral strains to validate and enhance informa-
tion about epidemic transmission pathways identified
using temporo-geospatial epidemiological analysis of high
risk migratory waterfowl. The validated and enhanced
knowledge is then used to draw further conclusions in
addition to serving as a framework for various ecological,
phylodynamic, and prophylactic analyses. Figure 2 pre-
sents an overview of the various steps involved in the pro-
posed methodology that are broadly classified into three
phases. The first phase involves identification of candidate
infection pathways via epidemiological analysis of migra-
tory patterns of high risk waterfowl species. The second
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phase involves phylogeospatial analysis of viral strains to
geocode strains in clades. The third phase combines the
results from the first two phases to validate and enhance
infection pathways and conduct various analyses. These
three phases are discussed in the following subsections.

Phase 1: identification of infection pathways in high risk
migratory waterfowl

The epidemic model used in this study consisted of all 22
high risk waterfowl species shown in Table 1 that have
been collated from earlier publications [17-20]. The GIS
data for the 22 species were obtained from GROMS data-
base [21] while migratory characteristics were obtained
from BirdLife International Database (BID) [22]. The
epidemic model represented as an Eco-description was
generated from the GIS datasets using SEARUM’s model
generation module. The position of various flocks in the
wintering zones and after migration to summering zones
are shown in Figure 3(a) and Figure 3(b). Additional
model images are included in supplementary material
with further information available at http://www.searums.
org/glbiol4/, including complete model, high resolution
images, and video illustrating the migration and infection
spreads discussed in this paper.

The epidemiological analysis was conducted by seed-
ing an infection in one Anas platyrhynchos flock in
Guangdong, China (at 23°21’36.53"N, 113°36'25.89"E),
corresponding to the root (A/goose/Guangdong/1996) of
the revised WHO H5N1 nomenclature phylogram [23].
The model was configured to have a basic reproductive
number for the infection (Ry) to be greater than 1 to
reflect the enzootic nature of the infection. Furthermore,
the disease transmission parameters were configured to
reflect a Susceptible—Infected (SI) type compartmental
epidemiological model. The model was simulated for a
period of three years while logging the locations of var-
ious infections occurring in the model. The stochastic
nature of the simulations require the use of a Monte
Carlo approach in which infections consistently occurring
in multiple simulations are identified as the dominant set

«— Phase 1 «— . — Phase 2 —

Influential clades
with phylogeographic data
and influential clades

SETR)

Per species Temporo- LR - ﬁ el S Y L GISAID}
@MGROMS to] geospatial P-S—E AMRUM‘S‘ - Phylogeo e Ali:nmenl:and H5N1 HA —_EPIFLU
Migratory SEARUMS | opidemic s 5 2[2| Coder Phylogram Generation ;J:):u:n:;
corridors model § § § S T
£ e
r
Infection graph S SQL Queries »
- '; Infection < Geocoding Data
R T & Graph
Results: o = .
Infection graph annotated Generator SQL Queries > GeoNames Tables in a

Figure 2 Overview of the three phases in the method used in this study.
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Table 1 List of high risk waterfowl species used for analysis.

Species Name Population #Flocks Species Name Population #Flocks
Aix sponsa 3500000 64 Anas bahamensis 640000 78
Anas acuta 5300000 372 Amazonetta brasiliensis 110000 103
Anas platalea 500000 47 Anas platyrhynchos 19000000 557
Anas sibilatrix 250000 30 Anas versicolor 126000 42
Anser anser 1000 4 Callonetta leucophrys 50000 3
Aythya ferina 2200000 213 Aythya fuligula 2600000 148
Aythya marila 1200000 114 Branta canadensis 5500000 169
Anser indicus 56000 11 Cygnus melanocoryphus 50000 32
Melanitta nigra 2100000 96 Mergellus albellus 130000 71
Netta peposaca 1000000 26 Philomachus pugnax 4200000 210
Anas Crecca 5900000 403 Porzana pusilla 21300 262

The list of species was obtained from earlier publications [17-20]

(a) Before Migration (Winter)

available at http//www.searums.org/glbio14/.

Figure 3 Locations where flocks (various species color coded) remain for significant portion of time. Subfigure (a) shows flocks in their
initial wintering zone. Subfigure (b) shows flocks in the summering zones at the end of one seasonal migration. Model details and videos

(b) After Migration (Summer)

of infections. Temporogeospatial attributes of flocks
involved in each pair of infection transmission are col-
lated to yield an infection graph for further processing in
phase 3. An infection graph (see Figure 7) is a Directed
Acyclic Graph (DAG) in which location of flocks are
nodes with edges connecting pairs of flocks involved in
infection transmission.

Phase 2: phylogeographical analysis of H5N1 strains

The phylogram generation procedure adopted by WHO/
OIE/FAO H5N1 Evolution Working Group [23] has
been utilized to generate a phylogenetic tree using 2,417
H5N1-Hemmagglutinin (HA) segments. The viral strains
were obtained from GISAID EpiFlu database [24] by
restricting the search to reads longer than 1600 nucleo-
tides (nt), which corresponds to 90% of the open frame
read length [23]. Furthermore, the EpiFlu search query
was restricted to a 3 year time period from 2006 to
2009 (inclusive) corresponding to the 3 year period used

for epidemiological analysis in Phase 1. A multiple
sequence alignment of the 2,417 H5N1-HA sequences
was generated using MUSCLE [25] (version 3.7) using
16 iterations. A large unrooted neighbor-joining tree of
the 2,417 H5N1 HA strains was constructed using a
GTR+I4+T model in PAUP* v4.0b10 [26]. The newick
form of the phylogram generated by PAUP* was used to
categorize leaves into clades such that percentage pair-
wise nucleotide distances between and within clades are
> 1.5% and < 1.5% respectively, concordant with WHO/
OIE/FAO clade definition criteria [23].

The clades identified from the phylogram are marked
with unique numbers and the isolate names are used to
geocode each leaf. Geocoding was conducted using the
GeoNames dataset [27] stored in a local MySQL data-
base with suitable geospatial indexes to accelerate var-
ious SQL queries. The geocoding process was
conducted in three passes to obtain both region and
country encoding to provide higher geospatial resolution
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for each sequence. For example, the isolate name A/
chicken/Tabanan/BBVD-142/2007 was geocoded to
Indonesia, Taban (rather than just Indonesia). Similarly,
A/Canada goose/AK/44075-058/2006 was geocoded to
United States, Alaska. In order to obtain regional-level
geocoding, the first pass attempted to perform exact
matches on various GeoNames tables using each term
in the isolate name. However, if the first pass did not
yield an exact match a second pass is performed using a
set of manually supplied overrides that were necessary
to disambiguate entries. For example, A/ruddy turn-
stone/DE/509531/2007 must be geocoded to United
States, Delaware rather than Germany (country code
DE). If the second pass is unsuccessful then a third pass
with approximate matching is pursued. Manual disambi-
guation is solicited in the third pass if the approximate
queries result in multiple matches. The geocoding infor-
mation for each read along with its clade numbers are
persisted for use in the next phase of processing.

Phase 3: fusing phylogeographic clades and
epidemiological infection graph
The last phase of the proposed methodology utilizes the
phylogeographic data extracted in Phase 2 to identify
and annotate strong infection pathways in the infection
graph generated in the Phase 1. In this phase, the lati-
tude and longitude values for each pair of verities con-
stituting an edge in the infection graph are reverse
geocoded to identify correspondence with phylogeo-
graphic data. Geocoding is performed using the same
GeoNames database in multiple passes using increasing
radius (1/50, 1/25, and 1 mile) of matching to identify
higher resolution regional-level geocodes. Vertexes that
are on ocean surfaces cannot be reverse geocoded and
are excluded from further analysis in this phase.

Pairs of reverse geocoded vertexes are matched with
clades containing same pairs of geocoded regions in the
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phylogeographic data. Identification of corresponding
clades, called influential clades (see Figure 6) is performed
by first matching on both region and country (i.e., higher
resolution data match) and then just on the country to
ensure strong correspondence. For example, the infection
pathway between (30°52’12"N, 28°22°14.5194") - (36°
41’4.9194"N, 36°41'4.9194")

is geocoded to Matruh, Egypt and Mugla, Turkey
respectively with correspondence to a clade containing
H5N1 HA sequences from Egypt and Turkey such as:
A/duck/Egypt/08355S-NLQP/2008 and A/chicken/Tur-
key/Ipsala563/2008 to enumerate a few. The infection
pathway is annotated and persisted for visualization and
various analyses discussed in the next section.

Results

The first phase of epidemiological analysis involving
semiregular tessellation of GIS data resulted in genera-
tion of 3055 entities representing flocks of 22 high risk
waterfowl species tabulated in Table 1. Several calibration
runs were conducted to tune epidemiological parameters
to reflect realistic inter and intra-flock infection spread.
Each epidemiological analysis cycle required about 4.62
hours to complete on a 3.9 GHz 8 core processor using
24 concurrent threads. The location of dominant infec-
tion transmissions between flocks are plotted in Figure 4
(a). The infection locations in the figure are color coded
to reflect the number of intermediate hosts to the source
infection in Guangdong, China (at 23°21’36.53"N, 113°
36’25.89"E), corresponding to the root (A/goose/
Guangdong/1996) of the revised H5N1 nomenclature
phylogram [23]. The locations of various infection trans-
missions indicate potential areas for secondary outbreaks
and increased density of outbreaks in turn increase the
probability of human outbreaks [10]. The high risk areas
as reported by WHO [3] are highlighted in bright orange
in Figure 4(a). The figure highlights the overlap between

(a) Location of infections

Figure 4 Overview of infection spread from Guangdong, China. Subfigure (a) shows distance of infection from primary source in terms of
number of intermediate hosts (indicative of increase in viral diversity and lineage) and areas with human outbreaks (in bright orange) as
reported by WHO [3]. Subfigure (b) shows initial entry of infection into North America migration.

Day: 0437

(b) Infection into N. America
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dense outbreaks identified by epidemiological analysis
and the regions with observed human cases reported by
WHO [3].

The infection patterns radiate from the primary infec-
tion source through S. E. Asia, Eastern Europe, Western
Europe and into North America (as summarized in
Figure 4) confirm that the infections into North America
are significantly distant from S. E. Asia. Furthermore, tem-
poral characteristics of the infections indicate that initial
infections into North America has a lag of ~15 months
(see video referenced in supplementary material) with
infections seeding occurring via both transatlantic and
transpacific migratory corridors. The primary entry loca-
tions were observed to be near the Gulf of Alaska, a
known high risk area [18], which consistently shows suffi-
ciently strong infections. Observations of ~15 month lag
between S. E. Asia and primary entry pathways into North
America are also corroborated by surveillance [8], statisti-
cal, and bioinformatics analyses reported by other
researchers [6,18,28]. In the epidemic analysis logically
spanning 3 years, infection spread from North America
was constrained to northern South America, with poten-
tial for larger infection spread into South America.

The multiple sequence alignment of 2,417 H5N1-HA
sequences (average length: 1710.28 + 34.37 nt, minimum
length: 1602 nt, maximum length: 1809 xt), with mini-
mum length of 1600 nt (>90% open frame read length),
spanning a three year period corresponding to the epide-
miological analysis interval, and obtained from GISAID
EpiFlu database [24] resulted in an alignment spanning
1841 nucleotides in 5 refinement iterations out of the
maximum configured 16 iterations. The phylogram gener-
ated from the alignment using neighbor joining and the
GTR+I+I" model in PAUP* was categorized into 130
clades using the criteria proposed by WHO/OIE/FAO [23]
which requires that percentage pairwise nucleotide dis-
tances between and within clades are > 1.5% and < 1.5%
respectively. An overview of the resulting phylogram is
shown in Figure 5. The resulting phylogram was manually
cross-verified to be consistent with the WHO/OIE/FAO
reference taxonomy phylogenetic tree [23].

The leaves in the phylogram shown in Figure 5 were
geocoded using the read names to obtain region and
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countries. Out of the 2,417 H5N1-HA strains 2,226 (92%)
reads were successfully geocoded while the remainder
could not be geocoded either due to lack of information or
ambiguity in the reads. Given the high yield, manual geo-
coding of the remaining 191 strains was not pursued. The
geographic distribution of the strains in the influential
clades are summarized by the chart in Figure 6 (details on
all the 130 clades is included in supplementary materials).
Out of the 130 clades 43 clades were singletons while 15
clades had only two leaves in them and these clades were
excluded from further analysis. The remaining clades had
an average size of 32.4 + 43.15 leaves with a median size of
18.5 with majority of the clades spanning multiple coun-
tries. Clade #122 (corresponding to clade 2.2 of WHO/
OIE/FAO taxonomy) was the largest and most diverse
clade consistent with the revised H5N1 taxonomy phylo-
gram with almost 50% of the reads from Egypt, consistent
with increased surveillance efforts between 2006 to 2008.

The 72 geocoded clades were used for phylogeographic
annotation of the infection graph generated from epide-
miological analysis of the infection spread. The infection
graph corresponding to summering and wintering zones
generated by annotating edges (infection pathways) using
phylogeographic annotations is shown in Figure 7. Note
that these are the regions were the flocks predominantly
roost and are primary locations for cross species infec-
tions. Out of the 72 geocoded clades only 28 were influen-
tial in annotation in wintering zone (Figure 7(a)) and 12
were influential in summering zone (Figure 7(b)). Further-
more, the 13 influential clades (denoted by red stars in
Figure 6) overlapped with the 23 influential clades from
the summering zone. Moreover, the largest and most
diverse clade #112 did not dominate annotation in either
zones and thereby minimizing concerns of skews due to
sampling bias in the phylogeographic data. Interestingly,
the 23 influential clades yielded annotations for just 27.8%
of the edges in the wintering zone in contrast to 12 influ-
ential clades managing to annotate 59.73% of the edges in
summering zone.

Discussions and conclusions
The aggregate data obtained from the result of fusing
phylogeographic and epidemiological data are shown in
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Figure 5 Overview of 130 clades in phylogenetic tree of 2,417 H5N1-HA sequences from GISAID EpiFlu database. The phylogram was
created via neighbor-joining and GTR+I+I" model using PAUP*. The clades are color coded and annotated to highlight influential clades that
contributed to phylogeocoding of infection pathways. A zoomable image of the complete phylogenetic tree is available in supplementary
materials. Additional information about the clades are also available in Figure 6.
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Table 2. The dominant country from the various clades is
China, spanning 13 of the 23 influential clades followed
by Vietnam in 4 clades. The data indicates that these
countries have large diversity in the enzootic strains.
Furthermore, the corresponding set of edges in the infec-
tion graphs shown in Figure 7(a) are predominantly
located in S. E. Asia with bidirectional edges indicating
cyclical infection patterns. Fusing phylogeographic data
and the infection pathways from epidemiological analysis
provides novel evidence indicating the increased potential
for reassortments to occur in this region.

The data in Table 2 shows a significant variation in
the number of edges annotated by influential clades
between summering and wintering seasons. The number
of influential clades increases in wintering zone because
the birds migrate down south and spread out across
many countries. This time frame also coincides with
increase in influenza epidemics in the temperate and
subtropical regions thereby increasing the potential for

reassortment between human and avian influenza viruses
leading to emergent of novel and possibly highly virulent
strains that cause mortality in humans. These inferences
are consistent with prior investigations reported by various
researchers and multinational surveillance organizations
[2,9,10,18-20]. However, the significant evidence correlat-
ing migratory patterns of high risk waterfowl species to
the “breeding grounds” of novel H5N1 strains using phylo-
geographic-epidemiological analysis is an original and
unique inference from this research. in addition to provid-
ing a complementary perspective on the ecological aspects
of avian influenza, the inferences increase confidence in
the proposed methodology.

The locations of infections that occur during migra-
tion, which correspond to migratory stopover sites, are
highlighted in Figure 4(a) show strong correspondence
with the high risk regions reported by WHO [3]. Many
of the infection pathways that arise due to interconti-
nental waterfowl migration show strong relationship
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Table 2 Details on 23 influential clades involved in phylogenetic coding of pathways in the infection graph.

Clade Num. Strain Count Countries in the clade (# strains) # Edges Annotated
Wintering Summering
6 24 United States (24) 6190 3700
(1.08%) (24.38%) (6.79%)
28 22 Cambodia (11), Vietnam (11) 210 0
(0.99%) (0.83%) (0.00%)
33 20 India (1), Thailand (18), Vietnam (1) 3640 5
(0.90%) (14.34%) (0.01%)
37 4 China (2), Hong Kong (1), Malaysia (1) 120 0
(0.18%) (0.47%) (0.00%)
39 11 China (10), Laos (1) 350 0
(0.49%) (1.38%) (0.00%)
48 16 China (11), Myanmar (4), Vietnam (1) 1030 0
(0.72%) (4.06%) (0.00%)
52 31 Laos (26), Thailand (3), Vietnam (2) 460 0
(1.39%) (1.81%) (0.00%)
56 61 China (27), Hong Kong (4), Taiwan (1), Vietnam (29) 40 0
(2.74%) (0.16%) (0.00%)
67 36 China (13), Mongolia (18), Russia (4), Vietnam (1) 585 3890
(1.62%) (2.30%) (7.14%)
68 28 (1.26%) China (9), Hong Kong (5), Japan (5), Laos (3), South Korea (6) 35 (0.14%) 0(0.00%)
70 16 (0.72%) China (4), Hong Kong (12) 1710 (6.74%) 705 (1.29%)
81 9 (0.40%) Indonesia (9) 10 (0.04%) 80 (0.15%)
88 8 (0.36%) China (1), Indonesia (7) 15 (0.06%) 50 (0.09%)
101 4 (0.18%) Egypt (4) 90 (0.35%) 0 (0.00%)
112 274 (12.31%) Austria (13), China (9), Czech Republic (9), Egypt (102), France (6), Germany (46), 2275 (8.96%) 4655 (8.54%)
Hungary (5), Iraq (8), Israel (5), Italy (3), Nigeria (16), Palestinian Territory (5),
Romania (5), Russia (2), Slovakia (3), Slovenia (5), Sweden (2), Switzerland (13),
Turkey (17)
113 86 Benin (2), Burkina Faso (6), Ghana (4), Ivory Coast (2), Nigeria (60), Sudan (9), 770 0
(3.86%) Turkey (3) China (5), Niger (87), Nigeria (83), Romania (3.03%) (0.00%)
115 202 (9.07%) (9), Saudi Arabia (12), Togo (3), Turkey (3) Bosnia and Herzegovina (1), China (6), 5 (0.02%) 0 (0.00%)
Czech Republic (2), Denmark (19), Germany (43),
116 94 (4.22%) Hungary (1), Poland (5), Romania (2), Russia (1), Sweden (10), Turkey (3), United 345 1425
Kingdom (1) (1.36%) (2.61%)
118 47 (2.11%) Bangladesh (15), India (32) 455 (1.79%) 0 (0.00%)
119 74 (3.32%) Czech Republic (2), France (1), Germany (28), Kuwait (9), Mongolia (1), Nigeria (3), 1695 (6.68%)  38555(70.74%)
Poland (4), Romania (3), Russia (3), Saudi Arabia (2), Switzerland (1), Turkey (6),
Ukraine (1), United Kingdom (10) China (3), Japan (1), Mongolia (1), Pakistan
120 22(0.99%) (2), Russia (6), South Korea (9) 2190 (8.63%) 295 (0.54%)
121 20 (0.90%) Afghanistan (6), Pakistan (12), Turkey (2) 80 (0.32%) 105 (0.19%)
122 43 (1.93%) Azerbaijan (5), Bangladesh (1), China (10), India (5), Iran (3), ltaly (2), Russia (14), 3085 (12.15%) 1035 (1.90%)

Turkey (3)

The strain count percentages are based on 2,226 strains (out of 2,417) that were successful geocoded. The percentages of edges annoted is based on 25,625 and
54,500 (out of 91,245) edges in summering and wintering zones respectively that were successfully phylogeocoded.

between Asia and Europe. Successful phylogeographic
annotation of these pathways substantiate their validity
because isolation of many closely related (less than 1.5%
nt, i.e., fewer than 28 bases out of 1841 nt) H5N1 strains
and the exploratory data analysis provide statistically
significant evidence to clearly reject the null hypothesis
that the infection pathways are a mere coincidence.

The phylogeographically annotated epidemiological
data related to entry of infections into Americas is also

consistent with surveillance [8], statistical, and bioinfor-
matics analyses reported by other researchers [6,18,28].
Specifically, the infection graph correctly elicits Alaska
as a primary gateway point into Americas [18,19] and
the temporal characteristics show reported minimum of
~15 month lag between S. E. Asia and Americas [28].
The bidirectional infection patterns between North and
South Americas suggest continuous circulation of
viruses providing support for the isolated clade #6.
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These aforementioned observations add further cre-
dence in the proposed methodology and validity of the
underlying epidemiological model.

The phylogeographic dataset used in this study did
not contain viral isolates to support the transatlantic
infection pathways shown in Figure 7. Analysis of the
long read (at least 1600 nt) H5N1-HA strains isolated
from United States since 2006 in the GISAID EpiFlu
database indicates that they are closely related to the
strains in clade #6 shown in the first row of Table 2.
However, the number of samples in the database from
West European and Scandinavian countries is very few
and that impacts the extent of annotation of transatlan-
tic pathways. However, given the foregoing analysis that
provides strong support for the underlying epidemiolo-
gical model, these infection pathways cannot be dis-
missed and consequently emphasize the need for
concentrated surveillance efforts in these regions.

The GISAID EpiFlu database does not contain suffi-
cient number of viral strains from the southern hemi-
sphere in the analysis timeframe spanning 2006 to 2009.
The database contains (completely ignoring date ranges)
just two strains from the whole of South America, 34
strains from Africa (excluding countries already included
in this study), one from Oceania (includes: Australia,
New Zealand and several smaller island nations), and
zero from Antarctica. Consequently, a large fraction of
the infection pathways to countries in the southern
hemisphere could not be phylogeographically annotated.
The lack of phylogenetic data from the southern hemi-
sphere is more pronounced during wintering seasons as
highlighted in Table 2 because birds migrate towards
the equator. The lack of strains motivates increase sur-
veillance when viewed in the context of the aforemen-
tioned analyses that provide strong evidence for the
proposed methodology in the northern hemisphere.
Moreover, the nodes in the infection graph with large
degrees of unannotated edges serve as landmarks for
guiding surveillance efforts.

Inferences drawn from this research provide strong
validation for the proposed methodology and the under-
lying epidemiological model. The study indicates that
the fusion of phylogeography with epidemiology can
provide novel, yet intuitive results and is a distinctive
approach for ecological and epidemiological analysis.
For instance, nodes with high degrees serve as epicen-
ters for enacting various prophylactic and containment
strategies. Moreover, having identified novel strains in S.
E. Asia, nodes along the transmission pathways in the
infection graph can be actively monitored to strategically
assess propagation characteristics thereby enabling
proactive design of vaccines and prophylactic measures
to contain epidemics in humans and livestock. The pro-
posed methodology involving an unique combination of
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temporo-geospatial epidemiology and phylogeography
provides support for pioneering new in silico approaches
for study and analysis of disease ecology, epidemiology,
viral phylodynamics, and prophylaxis.
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