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Abstract

Background: With the advance of next-generation sequencing technologies, the study of rare variants in targeted
genome regions or even the whole genome becomes feasible. Nevertheless, the massive amount of sequencing
data brings great computational and statistical challenges for association analyses. Aside from sequencing variants,
other high-throughput omic data (eg, gene expression data) also become available, and can be incorporated into
association analysis for better modeling and power improvement. This motivates the need of developing
computationally efficient and powerful approaches to model the joint associations of multilevel omic data with
complex human diseases.

Methods: A similarity-based weighted U approach is used to model the joint effect of sequencing variants and
gene expression. Using a Mexican American sample provided by Genetic Analysis Workshop 19 (GAW19), we
performed a whole-genome joint association analysis of sequencing variants and gene expression with systolic
(SBP) and diastolic blood pressure (DBP) and hypertension (HTN) phenotypes.

Results: The whole-genome joint association analysis was completed in 80 min on a high-performance personal
computer with an i7 4700 CPU and 8 GB memory. Although no gene reached statistical significance after adjusting
for multiple testing, some top-ranked genes attained a high significance level and may have biological plausibility
to hypertension-related phenotypes.

Conclusions: The weighted U approach is computationally efficient for high-dimensional data analysis, and is
capable of integrating multiple levels of omic data into association analysis. Through a real data application, we
demonstrate the potential benefit of using the new approach for joint association analysis of sequencing variants
and gene expression.
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Background
Next-generation sequencing technology provides denser
genetic profiles than previous microarray-based genotyp-
ing technology [1]. It could effectively capture rare vari-
ants with low minor allele frequency (MAF). Driven by
the advance of sequencing technology and limited herit-
ability explained by the genome-wide association studies
(GWAS) findings [2, 3], current research focus has
shifted toward studying rare variants associated with
common complex diseases. Although these studies hold
great promise for finding new genetic variants predis-
posing to human disease, they also face great chal-
lenges, for example, low power for detecting rare
variants because of their low frequency. The dramatic
increase in numbers of single nucleotide variants
(SNVs) also raises computational and statistical chal-
lenges (eg, multiple testing issue). One practical strat-
egy is to group multiple SNVs according to known
functional information (eg, variants in a gene or a path-
way) or location (eg, variants in a fix-sized bin [4]), and
jointly analyze these SNVs [5, 6]. By grouping and test-
ing multiple SNVs, we are able to aggregate association
signals and reduce the number of tests.
Besides SNVs, other omic data, such as gene expres-

sion, could also be collected. These intermediate omic
data can be integrated into sequencing studies for im-
proved power and better biological interpretation. While
the conventional analysis only links SNVs or gene ex-
pression to disease phenotypes, the emergence of multi-
level data brings the possibility of jointly analyzing SNVs
and other omic data. By fully utilizing the information,
the joint analysis has great potential to improve power
[7]. Nevertheless, how to efficiently analyze the high-
dimensional sequencing data and other omic data re-
mains a challenge.
Methods
In this empirical study, we used a similarity based
weighted U approach to jointly model SNVs and gene
expression data of 142 unrelated Mexican American
samples provided by Genetic Analysis Workshop 19
(GAW19). By using the weighted U approach, we per-
formed a genome-wide joint association analysis, evalu-
ating the association of 17,558 genes with three
phenotypes (ie,, systolic blood pressure [SBP], diastolic
blood pressure [DBP], and hypertension [HTN]).
For the integrative analysis, we extended previously

developed nonparametric approaches [8] to handle both
SNVs and gene expression. To aggregate the rare var-
iants in a gene, a weighted sum approach is used [8].
Let pk denote the MAF of the kth SNV (k = 1,2,…,K),

the weight for the kth SNV can be defined as wk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pk 1−pkð Þp

. Let K be the total number of SNVs in a
gene region, the weighted sum score for the jth sam-
ple can be obtained by,

aj ¼
XK

k¼1
wkvjk

2
XK

k¼1
wk

;

where vjk is the genotype value of the kth SNV for the jth

sample, coded by the minor allele count (ie, 0, 1, and 2).
We then define a weighted U statistic to assess the joint
effect of SNVs and gene expression on the disease
phenotype,

U ¼
X

i≠j
f ai; aj
� �

g ti; tj
� �

h yi; yj
� �

;

where f(ai,aj), g(ti,tj), and h(yi,yj) measure the similarities
of SNVs, gene expression, and phenotypes, respectively.
Phenotypic similarity h(yi,yj) serves as the U kernel,

h yi; yj
� �

¼
yi−E Yð Þð Þ yj−E Yð Þ

� �

Var Yð Þ ;

where yi and yj are ranks of the ith and jth samples’ phe-
notypes. The genetic and gene expression similarities are
weight functions, defined based on the Gaussian
distance,

f ai; aj
� � ¼ e−

ai−ajð Þ2
2N g ti; tj

� � ¼ e−
ti−tjð Þ2
2N ;

where ai (aj) and ti (tj) denote the weighted sum score
and the gene expression value of the individual i(j),
respectively.
Under the null hypothesis of no association, pheno-

typic similarity is unrelated to genetic or gene expression
similarities. Because phenotypic similarity is symmetric,
that is, E (h(yi,yj)) = 0, the expectation of U statistic is 0.
Under the alternative, phenotypic similarity increases
with the increase of genetic or gene expression similar-
ities. Therefore, the positive phenotypic similarities are
heavier weighted and the negative phenotypic similar-
ities are lighter weighted, leading to a positive value
of U. Because the U kernel satisfies the finite second
moment condition, E(h2(yi,yj)) <∞, and is degenerate
(ie, Var(E(h(yi,yj))) = 0), the limiting distribution of U
can be approximated as a linear combination of chi-
squared random variables with one degree of freedom
[8], and its p value can be obtained by using the
Davis method [9].
The weighted U approach is also flexible for testing

other hypothesis. In addition to evaluating the joint ef-
fect of genetic markers and gene expression (G + T), it
could be used for testing genetic effect (G) alone or gene
expression (T) effect alone. For example, we can modify
the approach by setting the gene expression similarity as
constant (eg, g(ti,tj) ≡ 1) to test genetic effect.
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Results
Genome screening
We applied three tests (ie, G + T, G, and T) to 142 unre-
lated Mexican American samples from the San Antonio
Family Heart Study (SAFHS) and the San Antonio
Family Diabetes/Gallbladder Study (SAFDGS). All ana-
lyses were based on SNVs on the odd-numbered auto-
somes and gene expression data provided by GAW19.
In this study, we assembled multiple SNVs based on
the functional unit (ie, gene) to facilitate the joint
modeling of gene and gene expression. We obtained
primary and alternative assembles from Genome Refer-
ence Consortium release version 38 (GRCh38) and
identified 32,436 gene regions in correspondence to
17,264 RNA probes. The number of gene regions ex-
ceeds the probes because multiple assembles of one
gene can share one nucleotide sequence, as well as
the RNA probes designed to capture such sequence.
SNVs that are not within or near a gene (±5 kb at
both ends) were removed. Gene regions with no
SNVs or RNA probes were also discarded. SNVs with
no variation (ie, MAF = 0) were dropped, as were
gene regions containing only such SNVs. A total of
6,956,910 SNVs, corresponding to 17,558 gene re-
gions, remained for the joint analysis. The first, sec-
ond, and third quartiles of the SNV counts in these
regions are 115, 205, and 411, respectively. We used
SBP, DBP, and HTN measurements at the first exam-
ination year as phenotypes, and age, gender, medica-
tion use, and smoking status as covariates. To
account for population stratification, we performed
Table 1 Summary of top 5 genes associated with SBP, DBP, and HT

Chr BP1 BP2 Gene

SBP 1 27763371 27777626 TMEM222

SBP 17 5486374 5490814 MIS12

SBP 19 10528205 10581112 PDE4A

SBP 3 57376936 57627630 DNAH12

SBP 19 32291486 32313186 MAG

DBP 11 72239077 72244176 PHOX2A

DBP 19 58182989 58213562 ZNF274

DBP 3 10277571 10284767 GHRL

DBP 11 43991253 44040694 ALX4

DBP 1 61681046 61725423 TM2D1

HTN 3 183042973 183066541 TRA2B

HTN 7 27445802 27583281 HIBADH

HTN 17 4004445 4143020 ZZEF1

HTN 3 57277865 57480169 DNAH12

HTN 5 131138142 131164051 SLC22A5

BP1 first base pair of the gene, BP2 last base pair of the gene, Chr chromosome, PG,
of the 3 p values, #SNV number of single nucleotide variants in the gene region
principal components (PCs) analysis by using the
EIGENSTRAT software [10]. The first 20 PCs were
used in the analysis to adjust for potential confound-
ing bias because of population stratification.
The whole-genome joint analysis of 3 phenotypes

was completed in 80 min using a single core of i7
4700 CPU with 8 GB memory. Table 1 summarizes
the top genes from the analysis, which were selected
based on the smallest p value of three tests. In gen-
eral, we observed that the G + T test either attained
the smallest p value or a p value close to the smal-
lest one. After adjusting for multiple testing, none of
the genes were significantly associated with the phe-
notypes. However, if we used a significant threshold
of 0.05, 4 of 15 genes were missed by considering
SNVs alone (ie, G) and six genes were missed by
considering gene expression alone (ie, T), while all
15 genes could be captured by the joint association
analysis (ie, G + T). This suggests that there are po-
tential advantages to combining genetic and gene ex-
pression information in the association analysis. The
quantile–quantile (QQ) plot was also drawn, which
showed no evidence of systematically inflation of the
G + T test (Fig. 1).

Discussion
Further investigation of the top genes also found bio-
logical plausibility of several genes related to blood pres-
sure. For instance, the product of PED4A hydrolyzes the
second messenger cyclic adenosine monophosphate
(cAMP), which plays a crucial role in controlling blood
N

PG+T PG PT #SNV

1.94E-003 1.61E-004 5.87E-001 100

1.63E-004 2.26E-003 4.46E-003 134

3.99E-004 1.30E-001 2.39E-004 311

7.87E-003 2.65E-004 9.92E-001 1691

1.74E-003 7.61E-001 3.22E-004 216

1.45E-005 4.17E-001 5.22E-006 112

3.68E-004 4.03E-001 1.27E-004 234

1.52E-004 4.94E-002 1.46E-004 118

4.16E-004 1.16E-003 2.20E-002 458

5.52E-003 5.43E-004 7.86E-001 307

1.06E-005 4.91E-003 3.11E-005 496

4.05E-004 3.31E-005 7.38E-001 204

3.86E-005 2.24E-002 1.27E-004 871

5.23E-003 1.13E-004 9.99E-001 327

2.58E-003 1.34E-004 9.12E-001 151

PG+T, PT p values from 3 types of tests, and the bolded p value is the smallest



Fig. 1 QQ plot for the joint association analysis (G + T) of SBP, DBP, and HTN
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pressure [11]. PHOX2A is also important for the devel-
opment of autonomic nervous system, which controls
the involuntary functions, such as heart rate and blood
pressure [12].
The study has certain limitations. Out of 8,348,674

SNVs, 1,391,764 (17 %) were unused because they are
not in or near any gene. We could group these SNVs
by physical location and also incorporate them into
the analysis [4]. We found limited association evi-
dence of single-nucleotide polymorphisms (SNPs)
identified from previous GWAS, possibly because of
differences in study samples (ie, whites vs. Mexican
Americans). Another possibility is that majority of
SNVs in our study are rare (MAF <0.01), whereas
previous GWAS mainly focus on common variants
(MAF >0.05).
The analysis of a large number of genes raised the

issue of multiple testing. In our analysis, the false dis-
covery rate approach was used to account for the
issue of multiple testing. After adjusting for multiple
testing, none of the genes could reach statistical sig-
nificance. By using the biology knowledge and statis-
tical tools, we might be able to further reduce the
number of tests and increase our chance to detect an
association. For instance, all assembles of one gene
have high correlation, and we can either exclusively
use the primary assemble or adjust p values for mul-
tiple correlated tests to better solve the multiple test-
ing issue.
Conclusions
The emerging sequencing data and other omic data
provide invaluable source for genetic study of human
diseases, yet integrating and modeling these high-
dimensional data remain a great challenge. By inte-
grating both sequencing variants and gene expression
into the association analysis, the weighted U
approach provides a powerful and computationally ef-
ficient way for screening disease-associated genes. By
applying the approach to the GAW19 data, we
showed that the joint analysis of sequencing variants
and gene expression could have some advantages
over association analysis only using sequence variants
or gene expression.
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