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Abstract

Background: Genome-wide association studies have made substantial progress in identifying common variants
associated with human diseases. Despite such success, a large portion of heritability remains unexplained. Evolutionary
theory and empirical studies suggest that rare mutations could play an important role in human diseases, which
motivates comprehensive investigation of rare variants in sequencing studies. To explore the association of rare
variants with human diseases, many statistical approaches have been developed with different ways of modeling
genetic structure (ie, linkage disequilibrium). Nevertheless, the appropriate strategy to model genetic structure of
sequencing data and its effect on association analysis have not been well studied.

Methods: We investigate 3 statistical approaches that use 3 different strategies to model the genetic structure of
sequencing data. We proceed by comparing a burden test that assumes independence among sequencing variants, a
burden test that considers pairwise linkage disequilibrium (LD), and a functional analysis of variance (FANOVA) test that
models genetic data through fitting continuous curves on individuals’ genotypes.

Results: Through simulations, we find that FANOVA attains better or comparable performance to the 2 burden tests.
Overall, the burden test that considers pairwise LD has comparable performance to the burden test that assumes
independence between sequencing variants. However, for 1 gene, where the disease-associated variant is located in an
LD block, we find that considering pairwise LD could improve the test’s performance.

Conclusions: The structure of sequencing variants is complex in nature and its patterns vary across the whole genome.
In certain cases (eg, a disease-susceptibility variant is in an LD block), ignoring the genetic structure in the association
analysis could result in suboptimal performance. Through this study, we show that a functional-based method is
promising for modeling the underlying genetic structure of sequencing data, which could lead to better performance.
Background
Advancements in sequencing technology have enabled
researchers to sequence exome regions or even the
whole genome at affordable cost [1]. The emerging se-
quencing data facilitates the study of massive amounts
of single nucleotide variants (SNVs), including both rare
and common variants, for their potential role in complex
human diseases. Although these studies hold great
promise for identification of new disease-susceptibility
variants, the extremely large number of SNVs brings
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significant challenge for association analysis. Conven-
tional single-locus analysis suffers from low power be-
cause of the low frequency of SNVs and the issue of
multiple testing. Grouping SNVs in a genetic region (eg,
gene) could aggregate the association signal and alleviate
the multiple testing issue, and therefore has been widely
used in association analysis of sequencing data [2].
Various statistical methods have been proposed to group

SNVs with or without considering the underlying genetic
structure (ie, linkage disequilibrium [LD]). However, the
impact of different strategies of modeling genetic structure
on association results has rarely been investigated. If em-
pirical evidence suggests that use of genetic structure in as-
sociation analysis does not increase power, it gives us a
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Table 1 Power comparison of 3 tests in the case of
unidirectional effects

Test Proportion of causal variants

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.5

BT 0.343 0.617 0.714 0.766 0.759 0.776 0.793 0.781

BTCOV 0.339 0.615 0.712 0.767 0.755 0.780 0.792 0.794

FANOVA 0.398 0.700 0.764 0.808 0.807 0.814 0.814 0.744

Table 3 Summary of the 10 genes with the smallest p values
from the association analysis

Gene Test

BT BTCOV FANOVA

SUMF1 8.75E-05 8.43E-05 1.31E-05

RELB 6.57E-02 7.08E-02 4.35E-04

HIF3A 2.12E-02 2.19E-02 4.34E-03

THRA 1.85E-02 9.68E-03 3.62E-02

TFDP1 1.50E-02 1.13E-02 1.95E-02

PROK2 1.23E-02 1.32E-02 1.27E-01

POLR2A 2.10E-02 2.25E-02 1.31E-02

CD1C 2.76E-02 1.42E-02 5.27E-02

CCL24 2.24E-02 2.71E-02 1.92E-02

MAP3K6 8.72E-02 8.45E-02 3.27E-02
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basis for excluding this factor from statistical modeling. On
the other hand, if it is important to consider LD among
SNVs, then we need to investigate appropriate strategies for
characterizing the underlying genetic structure. As an initial
step to investigate this issue, we chose 3 tests with different
ways of modeling LD between SNVs: (a) a weighted burden
test assuming independence among SNVs (BT) [3]; (b) a
weighted burden test considering pairwise LD (BTCOV)
[4]; and (c) a functional analysis of variance (FANOVA) [5]
test that considers LD among nearby loci and models the
genotype profile of an individual as a continuous function.
Methods
Burden test
We consider a burden test developed by Madsen and
Browning [3] that assumes independence among SNVs.
The test summarizes the genetic score of all SNVs in a

genetic region as

γ i¼
XL
j¼1

gij

wj
, where L is the number of

SNVs, gij is the number of low-frequency alleles of
the jth SNV for the ith individual. The weight is
defined to emphasize the effect of rare variants

with wj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
njqj 1−qj

� �r
, where nj is the number of

controls and qj is the minor allele frequency
(MAF) of the jth SNV in controls. Analysis of vari-
ance (ANOVA) is then used to assess the associ-
ation between summary genetic scores and the
binary phenotype. Because the test simply adds the
genotype of each SNV weighted by a function of
its MAF, it does not consider LD between SNVs.
Table 2 Power comparison of 3 tests in the case of
bidirectional effects

Test Proportion of causal variants

.01 .05 0.1 0.15 0.2 0.25 0.3 0.5

BT 0.208 0.508 0.585 0.621 0.665 0.678 0.703 0.683

BTCOV 0.200 0.509 0.579 0.618 0.663 0.668 0.698 0.680

FANOVA 0.217 0.597 0.683 0.732 0.765 0.799 0.809 0.815
Burden test that considers pairwise linkage disequilibrium
In addition to the above burden test, we also consider
another type of burden test proposed by Schaid et al [4],
which considers pairwise LD. We consider the following

summary of genetic scores,

Si¼
XL
j¼1

gij

wj
, where wj and gij are

defined in the same manner as BT. However, unlike the
conventional burden test, the test statistic of BTCOV is

given by T ¼
Y−Yð Þ0S

� �2

Y−Yð Þ0Vs Y−Yð Þ, where Y denotes the vector of

disease status and Y is the mean disease status. Vs is the

covariance matrix, where vii0 ¼
XL
j¼1

XL′
j′¼1

1
wj

1
wj′

cov gij; ; gi0j0
� �

.

Functional analysis of variance
FANOVA considers LD by fitting a continuous function
(curve) on the genotype data of an individual [5]. While
various smoothing methods can be used to fit curves on
individuals’ genotype data, we used cubic B-splines to fit
the smooth functions [6]. By using cubic B-splines [5],
we first fit gik(t), the smoothed function of genetic vari-
ants at the genomic position t for an individual i in the
kth group. The FANOVA can then be used to compare
the difference of curves in cases and controls. The
FANOVA model can be written as:

gik tð Þ ¼ μk tð Þ þ �ik tð Þ;
�ik tð Þ→G:P 0; γð Þ; i ¼ 1; 2; … ; nk ; k ¼ 1; 2

where i, k, nk and t denote the individual, the group
(ie, case or control), the total number of individuals in
the kth group, and the genomic position of a genetic
variant, respectively. G. P(0, γ) stands for the gaussian
process, where γ is the covariance function, ik is the
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error term and μk is the mean function for the k th

group. We test the following hypotheses:

H0 : μ1 tð Þ ¼ μ2 tð Þ ∀ t H1 : μ1 tð Þ≠μ2 tð Þ

for some t.
Similar to ANOVA, the test statistic for the hypothesis

can be constructed as,

F ¼

Z X2

k¼1
nkð bμk tð Þ−bμ tð ÞÞ2dt= 2−1ð ÞZ X2

k¼1

Xnk

i¼1
gik tð Þ− bμk tð Þ� �2

dt= n−2ð Þ;

where bμk tð Þ ¼
Xnk
i¼1

gik tð Þnk−1 and bμ tð Þ ¼
X2
k¼1

nk bμk tð Þn−1.

Simulation
Simulations were conducted to compare the performance
of the 3 methods using a simulation model specified here
as well as on the Genetic Analysis Workshop 19
(GAW19) simulated phenotype data. First, we selected a
subset of 142 unrelated individuals from the GAW19
family-based sequencing data. For each replicate, we ran-
domly chose a 30-kb segment from the 1.4 Mb region
(chromosome 3: 33100124 to 34539295). From each seg-
ment, we randomly selected a specified proportion of
SNVs (between 1 and 50 % as given in Tables 1 and 2) as
Fig. 1 Fitted smooth function plots and LD plots for THRA and RELB. LD plots
indicate LD blocks. The black curves are fitted smooth functions for all individ
controls, respectively. The red structure on the left side of the figure indicates
disease-associated SNVs. A logistic regression model was
then applied to the selected SNVs to simulate a binary
phenotype. In the simulation, we considered 2 types of ef-
fects, bidirectional effects and unidirectional effects, by
randomly generating the regression coefficients from N (0,
1) and N (2, 1), respectively. One thousand replicates were
simulated for each scenario for power and type I error es-
timation. For FANOVA, we used the penalized cubic B-
splines to determine the smoothness of the functions. The
smoothing parameter was determined by using the gener-
alized cross validation.
The above simulations only evaluated 1 genetic region.

To investigate the performance of the 3 methods on re-
gions with different genetic structures, we also applied
them to the subset of 142 unrelated samples from the
GAW19 family-based simulated data, of which 24 sam-
ples are cases. This data consists of 294 genes, including
THRA and RELB, which were simulated to be associated
with the hypertension phenotypes. For the association
analysis, hypertension (HTN1) from the first simulation
out of the 200 simulations was used.
Results
Type I error rates of the 3 tests are well controlled at
the 0.05 level (0.046 for BT, 0.044 for BTCOV, and 0.047
for FANOVA). As we observe from Table 1, power of
the 3 tests increases as we increase the proportion of
were obtained by using the software Haploview, in which triangles
uals. The red and green curves indicate the mean functions of cases and
that a region harboring a possible association corresponds to a LD block
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disease-associated variants. Overall, FANOVA has better
or comparable performance to BT and BTCOV, while
BTCOV obtains similar power to BT. The same co-
nclusion also holds when the effects are bidirectional
(see Table 2). We also observe that the power of the 3
tests is slightly lower in the case of bidirectional effects
than in the case of unidirectional effects.
Table 3 summarizes the top 10 genes with the smallest

p values from the association analysis. Consistent with
the result from simulations, we find that in general
FANOVA attains smaller p values, while the p values of
BT and BTCOV were comparable.
Discussion
Through this study, we find that overall BT and BTCOV
have comparable performance. However, for 1 gene,
THRA, BTCOV attains a lower p value than the other 2
tests. In the follow-up analysis, we observe a small LD
block in this gene (Fig. 1). The plot of the fitted geno-
type curves reveal the association happens to lie in that
LD block. Therefore, BTCOV, which models the LD pat-
tern, outperforms the other 2 tests. The plot also shows
that FANOVA is able to capture the LD block. Never-
theless, the effects in the LD block are largely unidirec-
tional, which is in favor of burden tests.
Variants may have more complex structure than

pairwise LD. Hence, in most cases we find that
FANOVA has comparable or better performance than
the other 2 tests. For example, FANOVA attained a
lower p value than the other 2 tests in the analysis of
RELB. From Fig. 1, we observe that FANOVA not
only captures the LD structure but also bidirectional
effects, which are indicated by the crossing of the
curves for cases and controls.
Conclusions
Our observations indicate that the performance of tests
depends on the underlying genetic structure; hence, ig-
noring LD in the association analysis may not be ideal. It
is advisable to use function-based approaches to explore
and model the genetic structure. As illustrated by Fig. 1,
the plot of the fitted functional curves provides a great
way to explore the genetic structure. The disease-
associated regions can also be visualized in this plot. If
the underlying genetic structure tends to be complex
(eg, having multiple LD blocks with different effects), it
is also advisable to use function-based approaches, such
as FANOVA, to adequately model the sequencing data.
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