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Abstract

Statistical association tests for rare variants can be classified as the burden approach and the sequence kernel
association test (SKAT) approach. The burden and SKAT approaches, originally developed for case—control analysis,
have also been extended to family-based tests. In the presence of both case—control and family data for a study,
joint analysis for the combined data set can increase the statistical power. We extended the Combined Association
in the Presence of Linkage (CAPL) test, using both case—control and family data for testing common variants, to rare
variant association analysis. The burden and SKAT algorithms were applied to the CAPL test. We used simulations to verify
that the CAPL tests incorporating the burden and SKAT algorithms have correct type | error rates. Power studies
suggested that both tests have adequate power to identify rare variants associated with the disease. We applied

the tests to the Genetic Analysis Workshop 19 data set using the combined family and case—control data for
hypertension. The analysis identified several candidate genes for hypertension.

Background

Rare variants may contribute to a large portion of dis-
ease risks [1]. Rare variant association tests can be clas-
sified as the burden test [2] and the sequence kernel
association test (SKAT) [3]. The burden test, assuming
variants have the same direction of effects on a disease,
collapses minor alleles at variants in a region and com-
pares the difference in allele frequencies for the col-
lapsed alleles between cases and controls. SKAT uses a
regression framework and a variance-component test to
consider variants with different directions of effects. The
burden and SKAT approaches, originally developed for
case—control analysis, have been extended to family-
based tests [4, 5]. In the presence of both case—control
and family data for a study, such as the Genetic Analysis
Workshop 19 (GAW19) data sets, joint analysis for the
combined data set can increase the statistical power.
FamSKAT [6], which accounts for familial correlation
based on kinship coefficients in a linear mixed model,
may be able to use both family and unrelated samples.
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However, FamSKAT was developed for quantitative trait.
Extending the model to dichotomous trait while prop-
erly considering family structures remains challenging
[7]. We extended the Combined Association in the Pres-
ence of Linkage (CAPL) test [8] to rare variant analysis.
The CAPL test uses both case—control and family data,
and properly considers population stratification with a
clustering algorithm. We applied the burden and SKAT
algorithms to the CAPL test, subsequently referred to as
the CAPL-burden and the CAPL-SKAT, respectively.
We applied the tests to the GAW19 data set using the
combined family and case—control data. We used the
real trait values to define the hypertension status. Some
candidate genes for hypertension were identified in the
analysis.

Methods

The GAW19 data

The GAW19 data set consists of 20 large Mexican Ameri-
can families with a total of 959 individuals and 1944 unre-
lated individuals. The family data include 464 individuals
for whom whole genome sequencing data are available,
while the sequences for other family members were
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imputed based on the sequenced individuals. Admixture
analysis for the family data suggested that most of the fam-
ily ancestry is European and Native American, where the
proportions of the two ancestries in each individual are dif-
ferent [9]. The data for the unrelated individuals were
whole exome sequenced. We used the real trait values to
analyze the odd chromosomes. For family data, individuals
were affected if at least one of their hypertension diagnoses
was hypertensive, while other individuals were unaffected.
For case—control data, individuals with systolic blood pres-
sure (SBP) 140 or greater, diastolic blood pressure (DBP) 90
or greater, or taking blood pressure medication were
affected, while others were unaffected. Variants were
annotated using SeattleSeq (http://snp.gs.washington.edu/
SeattleSeqAnnotation138/). We performed gene-based tests
by testing the association of all variants in exons within a
gene with the disease.

Quality control

We used the PLINK [10] PI_HAT statistic, which is the
proportion of loci that are identity-by-descent (IBD) be-
tween a pair of individuals, to examine the relatedness
among the 1944 unrelated individuals. We removed an
individual if the median of PI_HAT of the individual
with others was greater than 0.05, which is slightly below
the kinship coefficient of first cousin (i.e., 0.0625). Al-
though the CAPL test considers familial correlation in
the test, family structures need to be specifically pro-
vided in the CAPL test. Therefore, individual pairs with
PI_HAT between 0.15 and 0.70 were also removed. Vari-
ants with missing rates greater than 10 % in either the
family or the unrelated data were removed. The family
and unrelated data were merged with the union of vari-
ants in the two data sets. Variants with Hardy-Weinberg
equilibrium test p-values less than 10™* in the merged
data were removed. As we focused on analyzing rare var-
iants, variants with minor allele frequencies (MAFs)
greater than 5 % were removed.

The CAPL test

We first review the CAPL test statistic, which is the fun-
damental statistic in the proposed test. For a nuclear
family i, let X; be the number of a specific allele in af-
fected siblings, G; be the siblings’ genotypes, A be the
siblings’ affection status, GP; be the parental mating
type, N;; be the number of alleles in GP;, and y be the
set of all possible parental mating types conditional on
G;. The CAPL test statistic T; is calculated as

T; = Xi—ZjEV/P(GPi\Gi,A)Nij (1)
When parental genotypes are available, y is the ob-

served genotype. A case or a control is treated as a sin-
gle offspring with two missing parents and 7; can be
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calculated. Assuming there are m populations in the
data, P(GP|G, A) in equation (1) can be modified as

P(GP|G,A) =Y P(GP,pop = m|G,A)

= Zﬁzl P(GP|G, A, pop = m)
P(pop = m|G,A)

(2)

Calculating the probabilities in equations (1) and (2)
involves the estimation of parameters for the parental
mating types, the IBD status in affected siblings, and the
probability that a family is in a given population. These
parameters are estimated based on the expectation-
maximization (EM) algorithm. The sum of 7; over all
families is the CAPL statistic 7. A bootstrap procedure
is used to estimate the variance of T [11]. The CAPL

statistic for a variant takes the form \/; , which fol-
Var(T)

lows a standard normal distribution under the null hy-
pothesis of no linkage or no association.

The rare variant CAPL tests

We applied the burden approach based on the
weighted-sum method [2] and SKAT [3] to the CAPL
statistic. Assuming there are N nuclear families and M
variants, the CAPL-burden test statistic is defined as
B =YY 1w T, where wy is the weight for variant k and
Ty is the CAPL statistic at variant k. Following Madsen
and Browning [2], the weight wy is 1/+/ng,(1-q;),
where 7 is the number of unrelated individuals and g
is the estimated MAF based on the unrelated individ-
uals for variant k. The CAPL-SKAT statistic is defined
as S=Y3 upT;. Following Wu et al. [3], we used
Beta(q; 1, 25), the beta density function with parame-
ters of (1, 25), as the weight function for u;. We used
the bootstrap statistics to evaluate the significance for
B and S. Assuming L bootstraps are performed, the
bootstrap CAPL statistics under the null hypothesis at
variant k is Ty" = Ty~M; at bootstrap replicate j,
where T, is the original bootstrap statistic for Tj at

bootstrap replicate j and My = (Z}L,:lTk]) /L. The bur-
den and SKAT bootstrap statistics under the null are
* M * *
calculated as B; = Zkzlwka/ Sj =
2
Z :ilukz (Tki*) at bootstrap replicate j. The p-values for B

and S are calculated as (number of B, > B)/L and (number
of S; = S)/L, respectively. In our analysis, L was set as 10,000.

and

Simulation studies

As the simulated trait data for unrelated individuals were
not available when we attempted to evaluate the statis-
tical properties of the proposed tests, we used computer
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simulations to evaluate the type I error rates and power
for the CAPL-burden and CAPL-SKAT. HAPGEN2 [12]
was used to simulate 2 sets of haplotypes in the
microtubule-associated protein 4 (MAP4) gene based on
the 1000 Genomes project sequence data for the CEU
(Utah residents with Northern and Western European
ancestry) and MXL (Mexican ancestry in Los Angeles,
California) populations, where each set consists of
10,000 haplotypes. SeqSIMLA [13] was used to simulate
families and case—control data based on the haplotypes.
A total of 50 nuclear families with 3 siblings, where at
least one sibling was affected, and 300 cases and 1000
controls were simulated. The sample sizes were similar
to the GAW19 data used in our data analysis. We per-
formed admixture analyses using the AXMITURE soft-
ware [14] for the CEU- and MXL-simulated samples,
and observed similar global ancestry proportions for the
MXL samples as the proportions in the GAW19 family
data reported by Thornton et al. [9], where large propor-
tions for the CEU samples were inferred from the same
ancestry. We selected 50 and 100 rare variants with
MAFs of less than 5 % for the tests. The disease preva-
lence was 5 %. The type I error rates were calculated
based on 5000 replicates of the simulated data. For the
power simulations, we randomly selected 10 variants
with MAFs of less than 1 % as the disease loci. We as-
sumed that the population attributable risk (PAR) was
1 % for each disease locus, and similar to that of Madsen
and Browning [2], the odds ratio (OR) for disease locus i
was calculated as OR; =1+ (0.01/(0.99 x MAF))), where
MAF; is the MAF for i. We also simulated the scenario
where 50 % of the disease loci were protective. The OR
for protective variant i was specified as 1/OR; The
power was calculated based on 1000 replicates of the
simulated data.

Results

Simulation studies

Table 1 shows the type I error rates and the 95 % confi-
dence intervals for the CAPL-burden and the CAPL-
SKAT with different numbers of tested variants in the 2
populations. As seen in the results, the type I error rates
for the 2 tests were properly maintained at the 0.05

Table 1 Type | error rates and 95 % confidence intervals for the
CAPL-burden and CAPL-SKAT at a =0.05

Population Number of ~ CAPL-burden CAPL-SKAT
variants
CEU 50 0.056 (0.049, 0.062) 0.047 (0.041, 0.052)
CEU 100 0.049 (0.043, 0.054) 0.042 (0.036, 0.047)
MXL 50 0.050 (0.043, 0.056) 0.045 (0.039, 0.050)
MXL 100 0.049 (0.043, 0.054) 0.054 (0.047, 0.060)
( ) (t )

CEU + MXL 100 0.045 (0.039, 0.051 0.043 (0.037, 0.048
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significance level under different scenarios. Similar re-
sults were obtained at the 0.01 significance level (data
not shown). Most of the confidence intervals include the
expected levels. Table 2 shows the power comparison
between the CAPL-burden and the CAPL-SKAT under
4 scenarios (Scenl to Scen4) for MXL. When all of the
causal variants had risk effects, the CAPL-burden had
similar power with the CAPL-SKAT for both 50 and 100
variants being tested. However, when 50 % of the causal
variants were changed to be protective, the CAPL-
burden had a significant power loss while the CAPL-
SKAT still maintained power. This is as expected as the
CAPL-SKAT accounts for the directions of effects in the
test. We also combined the CEU and MXL simulated
replicates for Scen3, and the power for the 2 tests is
close to 1, suggesting that the tests maintained power in
highly stratified samples.

The rare variant analysis for hypertension

Because the CAPL can only analyze nuclear families, we
split the extended pedigrees to non-overlapping nuclear
families. A total of 863 individuals in the 1944 unrelated
samples were removed because of their cryptic related-
ness based on the PI_HAT statistics. In the combined
data, there were 1509 individuals, including 948 unre-
lated controls and 305 unrelated cases, and 256 individ-
uals in 47 nuclear families. There were 2,649,583
variants after quality control. A total of 12,340 genes
were analyzed. In the CAPL, we specified the number of
populations as 2 for the clustering algorithm, where the
family data and unrelated data were clustered in two
populations, to account for the batch effect for the 2
data sets.

Table 3 lists the top 10 significant genes. Although
none of the tests for the top 10 genes passed the mul-
tiple testing correction threshold (ie., 0.05/12340 =
2.34x 10" °), some genes, which are underlined in
Table 3, have functional implications for hypertension.
Among the underlined genes, G protein-coupled recep-
tor, class C, group 5, member C (GPRC5C) is particular
interesting. GPRC5C may have cellular effect between
retinoic acid and the G-protein-coupled receptor
(GPCR) signal transduction pathway [15]. Dysfunction

Table 2 Power comparison between the CAPL-burden and the
CAPL-SKAT for the MXL population

Scenario Number of 9% of Protective ~ CAPL-burden  CAPL-SKAT
variants variants

Scen1 50 0 0.983 0.953

Scen2 50 50 0211 0.850

Scen3 100 0 0.874 0.898

Scen4 100 50 0.097 0.721
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Table 3 The 10 most significant genes for hypertension
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Gene® p Value Test Gene® p Value Test
KRTAP21-2 1.00E-04 CAPL-SKAT UBE2Q2 5.00E-04 CAPL-SKAT
GPRC5C 1.29E-04 CAPL-burden TVP23C-CDRT4 7.00E-04 CAPL-SKAT
TAS2R38 2.00E-04 CAPL-SKAT ELMO1 7.00E-04 CAPL-SKAT
CCND1 4.00E-04 CAPL-SKAT EXT2 8.00E-04 CAPL-burden
ANXA2 5.00E-04 CAPL-SKAT CYFIP1 1.00E-03 CAPL-burden

?Genes with functional implications for hypertension are underlined

of the GPCR signal transduction in the cardiovascular
system may increase the risk of hypertension [16].

Another underlined gene, ubiquitin-conjugating en-
zyme E2Q family member 2 (UBE2Q2), has been identi-
fied to have association with chronic kidney disease [17].
Chronic kidney disease can induce several cardiovascular
diseases, including hypertension [18]. The last under-
lined gene, engulfment and cell motility 1 (ELMOI), is a
susceptible gene in diabetic nephropathy [19], and
hypertension is highly prevalent in diabetic nephropathy
patients [20].

Discussion and conclusions

We extended the CAPL test to rare variant association
tests. The significance for the CAPL-burden and the
CAPL-SKAT statistics are assessed with their bootstrap
statistics under the null hypothesis. Among the 10 most
significant genes for hypertension, we identified several
candidate genes for hypertension. More research is needed
to study the role of the candidate genes in hypertension.

For the power studies, we also evaluated the perform-
ance of the proposed tests for testing variants obtained
based on MAF thresholds of 10 %, 20 %, 30 %, 40 %, and
50 % for Scen3 (data not shown). The results suggest
that the CAPL-SKAT had slight power loss with the in-
crease of the MAF thresholds, whereas the power for
the CAPL-burden decreased to 0.36 when the propor-
tion of causal variants in the variants being tested de-
creased to 7 % at the MAF threshold of 40 %.
Consequently, in practice, the CAPL-SKAT should be
performed if common variants are included in the
analysis.

The CAPL uses a clustering algorithm, which assumes
family members have the same genetic background across
the genome, to identify subpopulations. Our simulation re-
sults showed that the CAPL test maintained correct type I
error rates for the admixed population, where the assump-
tion of homogeneous genetic background across the gen-
ome in all family members is violated. It is possible to
extend the CAPL test to account for population admixture
by calculating P(pop = m|G, A) in equation (2) based on the
local admixture probabilities estimated using software such
as LAMP-LD or LAMP-HAP [21]. Correlation in geno-
types for siblings needs to be considered when calculating

the local admixture probabilities. As LAMP-LD assumes
independent samples and LAMP-HAP uses only trio infor-
mation, it will be of interest to evaluate the robustness of
the CAPL-burden and CAPL-SKAT tests when the local
admixture probabilities estimated from the software are in-
corporated in the methods.

It is possible to combine the CAPL-burden and
CAPL-SKAT into a test, using algorithms such as SKAT-
O, which can reduce the number of tests. Moreover, the
CAPL-burden and CAPL-SKAT currently focus on ana-
lyzing rare variants. It is possible to extend the tests to
accommodate both common and rare variants, using al-
gorithms such as those found in Chung et al. [22] and
Saad and Wijsman [23]. As more sequencing studies are
performed on either the family or the case—control de-
signs, the CAPL-burden and CAPL-SKAT will be useful
for identifying candidate genes using the combined
case—control and family data.
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