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Abstract

With the rapidly decreasing cost of the next-generation sequencing technology, a large number of whole genome
sequences have been generated, enabling researchers to survey rare variants in the protein-coding and regulatory
regions of the genome. However, it remains a daunting task to identify functional variants associated with complex
diseases from whole genome sequencing (WGS) data because of the millions of candidate variants and yet moderate
sample size. We propose to incorporate the Encyclopedia of DNA Elements (ENCODE) information in the association
analysis of WGS data to boost the statistical power. We use the RegulomeDB and PolyPhen2 scores as external weights
in existing rare variants association tests. We demonstrate the proposed framework using the WGS data and blood
pressure phenotype from the San Antonio Family Studies provided by the Genetic Analysis Workshop 19. We identified
a genome-wide significant locus in gene SNUPN on chromosome 15 that harbors a rare nonsynonymous variant,
which was not detected by benchmark methods that did not incorporate biological information, including the T5
burden test and sequence kernel association test.
Background
Genome-wide association studies (GWAS) have identi-
fied thousands of genetic loci robustly associated with a
wide range of complex diseases and traits. However,
there is a big gap between the disease heritability ex-
plained by GWAS-identified loci and that estimated
from twin/family-based studies, leading to the so-called
missing heritability [1]. To fill in this gap, recent genetic
studies have shifted gear from GWAS investigating com-
mon single-nucleotide polymorphisms with a minor al-
lele frequency (MAF) larger than 5 % to low frequency
(MAF between 1 and 5 %) and rare variants (RVs with
MAFs <1 %) afforded by the next-generation sequencing
(NGS) technology. As a result of the relatively low cost
of the whole exome sequencing (WES), the first wave of
NGS-based association studies of complex diseases, for
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example, the Exome Sequencing Project (ESP), has pri-
marily focused on the protein-coding regions of the
human genome, that is, the exome, constituting approxi-
mately 1 % of the total genome. Although the WES has
been extremely useful in identifying causal variants for
Mendelian disorders, the success with WES-based asso-
ciation studies of complex diseases has been very limited
thus far [2]. This is partly because of the limited statis-
tical power afforded by the current sample size of WES
studies, and partly because of the incomplete coverage
of the human genome by the WES. To improve the
power, many new statistical methods for analysis of RVs
have been proposed in the past few years, including the
T1/T5 burden tests (variant collapsing methods with a
MAF threshold of 1 % or 5 %), sequence kernel associ-
ation test (SKAT) [3], adaptive sum of powered score
(aSPU) [4], among others; see Lee et al. [2] and Pan
et al. [4] for recent reviews.
Thanks to the rapidly decreasing cost of whole gen-

ome sequencing (WGS), thousands of whole genome
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sequences have been generated [5], enabling researchers
to go beyond the exome and survey RVs in the regula-
tory regions of the genome. However, with almost 100
times more variants and even smaller sample size in
WGS than those in WES, it remains a significant chal-
lenge to analyze WGS data. To boost the power, we and
others have previously proposed statistical methods to
leverage external biological information, such as compu-
tational predictions of damaging effects of nonsynon-
ymous variants based on PolyPhen2 [6], in association
analysis of WES data [7–9]. On the other hand, genome-
wide functional studies, such as the Encyclopedia of
DNA Elements (ENCODE) project [10], have substan-
tially advanced our knowledge about the functional
DNA elements, especially noncoding regions, of the hu-
man genome. In contrast to the current practice of using
the ENCODE information to annotate GWAS findings
and prioritize functional variants to follow up [11], we
propose to incorporate the ENCODE information in the
discovery stage of association analysis of WGS data to
boost the statistical power. Specifically, we use the Regu-
lomeDB [12] scores as weights in existing RV association
tests. RegulomeDB is a database that integrates a large
collection of regulatory information of the human ge-
nomes, including multiple data sets such as ENCODE, ex-
pression quantitative trait locus (eQTL), computational
predictions, manual annotation, and other sources, to
identify functional variants and putative regulatory poten-
tial. The existing RV association tests we considered were
the T5 burden test and SKAT, as a representative of uni-
directional and omnidirectional tests, respectively. Al-
though unidirectional tests assume that all the variants in
a test unit, for example, a gene, influence the trait in the
same direction, either increasing or decreasing, omnidir-
ectional tests allow the presence of variants in both direc-
tions in a test unit [2]. We demonstrated the proposed
framework using the WGS data and blood pressure
phenotype from the San Antonio Family Studies (SAFS)
provided by the Genetic Analysis Workshop (GAW) 19.

Methods
Genotype and phenotype data
We used the WGS data provided by GAW19 which in-
cluded more than 8.3 million variants from odd-
numbered chromosomes and 959 related individuals.
The longitudinal phenotype data set had 1389 individ-
uals including all samples with WGS data. Because there
were many missing observations in the baseline meas-
urement, we selected those subjects with at least 1 blood
pressure measure among 5 visits and were able to obtain
789 related individuals. We used the earliest measure-
ment among all completed visits for each person. We
analyzed the systolic blood pressure (SBP) as a quantita-
tive phenotype.
Functional annotation of variants
We employed a sliding window approach to group RVs
with a window length of 4 kb and a step size of 2 kb, as
in Morrison et al. [5], resulting in 658,631 windows in
total. The median number of variants in a window was
19. RegulomeDB provides a scoring system that catego-
rizes variants by the confidence that a variant lies in a
functional location and likely results in a functional con-
sequence. There are 6 categories. Variants in category 1,
which are supported by evidence from eQTL, transcrip-
tion factor (TF) binding, matched TF motif, matched
DNase footprint, and DNase peak, are considered to be
most likely to affect binding and linked to expression of
a gene target. Among the 8.3 million variants annotated
in RegulomeDB, 0.26, 2.71, 2.12, 7.56, 30.76, and
56.59 % variants were assigned to category 1, 2, 3, 4, 5,
and 6, respectively. If a nonsynonymous variant was not
annotated by RegulomeDB, we used its PolyPhen2 func-
tional prediction to assign it to a category, that is, “prob-
ably damaging” to category 1, “possibly damaging” to
category 3, and “benign” to category 5. If a variant was
not found in either RegulomeDB or PolyPhen2, we
assigned it to category 6.
Statistical methods
We used T5 and SKAT as the benchmark association tests
of RVs with MAFs of less than 5 %. Given a quantitative
trait Y ¼ Y 1;…;Ynð Þ for n subjects, SKAT assumes a lin-
ear mixed effects model Y i ¼ γ0 þ Ziγ þ Giβþ εi , where
γ0 is an intercept; Zi is the i-th row vector of the covariate

matrix; γ ¼ γ1;⋯; γp

� �
′ is a vector of fixed-effect coeffi-

cients; Gi is the i-th row vector of the genotype matrix G
coded as variant allele counts; β ¼ β1;⋯; βm

� �
′ is a vector

of random effects for RVs; and ε ¼ ε1;…; εnð Þ′ is a vector
of random errors. Moreover, β follows an arbitrary distri-

bution with E βj

h i
¼ 0 and Var βj

h i
¼ ωj

2τ , and ωj

¼ Beta MAFj; 1; 25
� �

is a prespecified weight for variant j
( j ¼ 1; ::;m ). Thus the null hypothesis of no associ-
ation between the phenotype and the m RVs is re-
duced to H0 : τ ¼ 0. As in Wu et al. [3], the SKAT

test statistic under a linear kernel is TSKAT ¼ Pm
j¼1ω

2
jPn

i¼1 Y i � μ̂ið ÞGij
� �2

, where μi is the predicted mean
of Y i under H0: In addition to the default Beta 1; 25ð Þ
weights assuming that rarer variants tended to have
larger effect sizes, we used two other versions of weights:
equal weights with all ωj ¼ 1 (called “uwSKAT”) and
weights determined by RegulomeDB (called “regSKAT”)
with ω2

j ¼ f sj
� �

, where sj is variant j’s discrete functional

category assigned by RegulomeDB. The function f trans-
forms the RegulomeDB functional categories 1; 2;⋯; 6ð Þ
to numerical weights as detailed in the section
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“Transformation of functional categories” below. The
T5 tests for the association between the phenotype and
the mutation burden collapsed over the m RVs defined
as

Pm
j¼1ωjGij in the linear regression framework, where

ωj ¼ 1 if MAFj < 0:05 and ωj ¼ 0 otherwise [2]. We
also applied 2 modified forms of the T5 test: the Mad-
sen and Browning (MB) [2] weighting with ωj ¼ 1=

MAFj 1�MAFj
� �� �

and the RegulomeDB weighting

with ωj ¼ f sj
� �

, called “regT5.”
We included age at visit, sex, smoking status, and

blood pressure medication use as covariates in all the as-
sociation analyses. In addition, because we analyzed the
family-based samples in GAW19, we applied the above
described tests, including SKAT, uwSKAT, regSKAT, T5,
MB, and regT5, in the family-based SKAT and T5 frame-
works [13]. As implemented in the R package “seqMeta,”
family relatedness among individuals was properly taken
into account by introducing a subject-specific random
effect δi , whose covariance matrix was proportional to
twice the kinship matrix obtained from the pedigree in-
formation [13]. Using the conservative Bonferroni pro-
cedure for 658,631 sliding windows, we controlled the
family-wise error rate (FWER) at 0.05 with a significance
level α = 0.05/658631 = 7.59e-08, which corresponds to
7:12 on the � log10 scale.

Transformation of functional categories
As mentioned above, in regSKAT and regT5 we trans-
formed the RegulomeDB discrete functional categories
Fig. 1 The Manhattan plots of �log10 pð Þ of regSKAT and regT5 for the od
T5, or MB was also plotted if it was greater than 5. The red line corresponds t
a p value of 1e-05
1; 2;…; 6ð Þ to numerical weights. We employed a quad-
ratic function of the reverse order of categories f sð Þ ¼ s2 ,
where s is the reverse order of a category; that is, s equals
6; 5;…; 1 for category 1, 2,…, 6, respectively. We chose
the quadratic transformation because it puts much less
weight on low-confident functional categories, for ex-
ample, 5 and 6, in which the variants are more likely to be
neutral/nonfunctional. Of note, as majority of the sliding
windows only included variants in categories 5 and 6, this
weighting scheme was moderately informative for those
windows, largely letting the observed genotype and
phenotype data determine the association strength.
Results
As shown in the Manhattan plots (Fig. 1), regSKAT and
regT5 identified some sliding windows on chromosome
15 with p values lower than the genome-wide signifi-
cance threshold, while the p values for these windows by
other tests that did not incorporate the ENCODE/Poly-
Phen2 information were far less significant. On the other
hand, the MB T5 burden test also identified some
genome-wide significant windows on chromosomes 13
and 15. We took a closer look at the significant sliding
windows identified by regSKAT and regT5 on chromo-
some 15. Figure 2 shows the distribution of the func-
tional categories in sliding windows with at least 1 p
value less than 10�5 among the 3 methods in each of the
SKAT and T5 frameworks. In particular, we observed
that the genome-wide significant sliding windows
d-numbered chromosomes from 1 to 21. �log10 pð Þ of SKAT, uwSKAT,
o genome-wide significance threshold, while the blue line corresponds to



Fig. 2 Functional annotation of the top windows on chromosome 15 and phenotype histogram for the genome-wide significant window. Panels
a and b Bar plots showing the frequency of functional categories in the sliding windows that had at least 1 test with p value of <10−5 within
each of the SKAT and T5 frameworks. X-axis corresponds to the center variant position in a sliding window. Dots in each window show �log10 pð Þ.
Panel c Histogram showing the distribution of SBP of 789 individuals. Carriers of the variants in the genome-wide significant window centering at
variant chr15:75912109 were highlighted. Dotted lines indicate the 10th, 50th, and 90th percentiles of the observed SBP
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centering at chr15:75912109 and chr15:75912182 in-
cluded some variants in category 1, suggesting that the
external biological information might have helped boost
the signals. We further looked into the sliding window
centering at chr15:75912109, which included a double-
ton variant chr15:75913349 in category 1 and a few
other variants in category 6. All the variants in this win-
dow were annotated to gene SNUPN, standing for snur-
portin 1, which has not been reported to be associated
with blood pressure. It turned out that exonic variant
chr15:75913349 was not annotated in RegulomeDB, but
was annotated as a probably damaging nonsynonymous
variant by PolyPhen2 with a confidence score of 99.2 %,
resulting in category 1 in our weighting scheme. This
variant was also predicted to be highly deleterious by
several other functional prediction algorithms including
sorting tolerant from intolerant (SIFT), likelihood ratio
test (LRT), and MutationTaster [14]. As shown in the
histogram in Fig. 2c, 2 individuals who were half-siblings
and carriers of nonsynonymous variant chr15:75913349
had SBP of 179 and 208, respectively, with the latter
close to the maximum observed SBP. Although the ef-
fect sizes of the rest variants in this window were not as
large as that of chr15:75913349, the carriers tended to
have higher SBP. As all the variants increased the SBP,
that is, in the same direction of effect size, regT5 was
able to identify this sliding window as well. We noted
that the MB T5 burden test also identified 2 significant
sliding windows centering at chr13:96267813 (near gene
DZIP1) and chr15:88694779 (near gene NTRK3), re-
spectively, although neither gene was reported to be as-
sociated with blood pressure before. As all variants were
assigned to low functional categories, that is, 5 and 6, in
these windows, T5 and regT5 gave nonsignificant p
values of similar magnitudes (see Fig. 2b). A closer look
revealed that these windows contained some rarer vari-
ants, for example, doubletons, whose carriers tended to
have higher SBP, favoring the assumption of the MB
weighting scheme. This suggested that in the absence of
informative external biological knowledge, the MAF
might provide useful information.
To investigate if the proposed weighting scheme might

increase the false-positive rate when there was no associ-
ation, we used the simulated phenotypes provided by
GAW19 to evaluate the type I error rate. We randomly
selected 50 sliding windows on chromosome 15 that did
not include any causal variants in the GAW19 simula-
tion model. At the significance level α = 0.05, the empir-
ical type I error rates averaged over 50 sliding windows
and 200 simulated phenotype sets were 0.0551, 0.0506,
0.0513, 0.0506, 0.0535, and 0.0467 for SKAT, uwSKAT,
regSKAT, T5, MB, and regT5, respectively, suggesting
that incorporating external biological information into
existing RV association tests did not inflate the type I
error.

Discussion
We have proposed a general framework to exploit exter-
nal biological information in the analysis of WGS data.
We identified a genome-wide significant locus on
chromosome 15 harboring a rare nonsynonymous vari-
ant, while other methods without leveraging biological
information did not identify it. This significant locus
warrants following up and replication in future inde-
pendent studies.
The proposed general framework can be used to in-

corporate other genome-wide functional annotations
and conservation scores, such as CADD [15] and GERP
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++ [16]. Given that these functional annotation systems
are likely to be incomplete because of limited biological
knowledge, they may provide complementary informa-
tion and it would be of interest to integrate multiple
functional scores simultaneously. In addition, alternative
weighting schemes other than the one proposed here
would be worth investigating regarding the power and
Type I error rate.
In this study, we used the Bonferroni procedure to

correct for multiple testing. Considering that the neigh-
boring sliding windows overlapped with each other, the
Bonferroni correction was very conservative, leading to
reduced statistical power. Further research is warranted
to estimate the effective number of tests in the sliding
window framework. Finally, we adjusted the treatment
effect on the SBP by simply including the medication
use as a binary covariate in the regression framework; al-
ternative adjustment methods as studied in Tobin et al.
[17] are worth investigating.

Conclusions
In summary, we have proposed a general framework to
incorporate the ENCODE and PolyPhen2 information
into association tests of WGS data. We demonstrated
the potential statistical power gains with the proposed
method using the GAW19 WGS genotype and SBP
phenotype data. Because it remains a challenge to
analyze WGS data, it would be worth capitalizing on
newly available biological knowledge in the proposed
and alternative frameworks to maximize the power of
genomic discovery.
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