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Abstract

We used our extension of the kernel score test to family data to analyze real and simulated baseline systolic blood
pressure in extended pedigrees. We compared the power for different kernels and for different weightings of
genetic markers. Moreover, we compared the power of rare and common markers with 3 strategies for joint testing
and on marker panels with different densities. Marker weights had much greater influence on power than the
kernel chosen. Inverse minor allele frequency weights often increased power on common markers but could
decrease power on rare markers. Furthermore, defining the gene region based on linkage disequilibrium blocks
often yielded robust power of joint tests of rare and common markers.
Background
The kernel score test is a global covariate-adjusted mul-
tilocus procedure that tests for overall association of sets
of markers (see Schaid [1] for a review). This reduces
the multiple-testing burden. Tested marker sets can, for
example, belong to a pathway or candidate gene. The
kernel score test can be applied to common and rare
variants alike, as well as to data of genome-wide associ-
ation studies (GWAS) or sequence data where it is
named SKAT (sequence kernel association test). The
kernel score test was developed for independent subjects
[1]. Recent contributions by others and ourselves [2–6]
extended the kernel score test to family data.
The kernel is chosen to describe genetic correlation

among subjects. Different kernels have been suggested
for genetic epidemiological applications. These kernels
differ in whether marker–marker interactions are mod-
eled and how complex the interaction effects may be. A
frequent choice is to apply the kernel function on
weighted minor allele dosage data (thus using an
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additive coding of minor allele effects). The dosage
weights increase with decreasing minor allele frequency
corresponding to the a priori assumption that less-
frequent variants may have larger effects. Weighting al-
lows rarer variants to contribute more to the overall test
despite of their low frequencies.
With appropriate weighting, rare and common vari-

ants may be entered together into the kernel for joint
testing. Recently however, Ionita-Laza et al. [7] proposed
alternatives that can be more powerful. We explored
these alternative joint tests on rare and common variants
in the Genetic Analysis Workshop 19 (GAW19) family
data. Moreover, we compared the power of different
marker weights and kernels on sequence and GWAS
panels. As we focused on genes, we also explored how
size or positioning of a flanking region affects the test
power.
Methods
Data
We analyzed baseline systolic blood pressure (SBP) and
dosage data in the extended Mexican American pedi-
grees of the GAW19 family data, which are identical to
the Genetic Analysis Workshop 18 data [8]. As before
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[6], we considered subjects with known baseline SBP
and baseline diastolic blood pressure, sex, and age, who
were not on blood pressure medication (real SBP: 706
subjects, excluding the first listed monozygotic twin of 2
observed twin pairs; simulated SBP: 740 to 781 subjects,
numbers vary for 200 simulated study replicates because
of inclusion criteria). For real SBP, we considered candi-
date gene AGTR1 [9] on chromosome (chr) 3 that tends
to associate with SBP in the present family sample [6].
For simulated SBP, we selected from the simulation an-
swers 5 strongly associated genes with various linkage
disequilibrium (LD) structures: MAP4 (very homoge-
neous LD, chr3) and, in the order of increasing variabil-
ity of LD, TNN (chr1), FLT3 (chr13), LEPR (chr1), and
GSN (chr9). We used NCBI build 37, International
Haplotype Map Project (HapMap) [10] reference data
for Mexican Americans and the default algorithm in
Haploview 4.2 [11] with a required fraction of strong LD
of 0.7 and confidence interval limits of 0.5 and 0.8 to de-
termine LD-blocks based on the D’ measure. Gene re-
gions were defined as the LD-block(s) that contained the
gene. For AGTR1, we also considered the region from
the first to the last exonic position and flanking regions
of 30 kb or 500 kb. For the same subjects, we used 2
single-nucleotide polymorphism (SNP) panels: sequence
(allele dosage data) and GWAS (allele dosage data re-
duced to GWAS SNPs). Biallelic SNPs were included for
testing if their Hardy-Weinberg equilibrium test p values
were equal to or greater than 10−5 (rounding imputed
dosages for this purpose only) and if at least 7 observa-
tions of the minor allele were present in the sample. The
latter parallels minimum data requirements in paramet-
ric regression.

Kernel score test for family data
Here we briefly summarize our method introduced in
[6], denoting vectors and matrices by bold letters. Base-
line SBP is right-skewed distributed and was therefore
rank-normalized by Blom transformation [12] to stand-
ard normally distributed target variables Y = (Y1,…,Yn). Y
depend on fixed covariate effects b (intercept, age, sex,
age × sex interaction), random effects c that adjust for
familial polygenic background, a semiparametric model
h(G) of genetic markers G, and regression residuals e ~
N(0,s2I) with residual variance s2.

Y ¼ XbT þ ZcT þ h Gð Þ þ e ð1Þ

X, Z are the design matrices for fixed covariate effects
and random family effects. h(G) =KaT depends on a n × n
dimensional kernel matrix K of genetic similarities be-
tween n subjects on markers G, and multivariate normally
distributed random effects a ~N(0,τK) [1]. One tests for a
genetic covariance component τ.
The kernel score test is computed from restricted
maximum likelihood parameter estimates of the genetic
null model (where h(G) = 0). Thus, the null model esti-
mates fixed covariate effects bo, random pedigree effects
co, the variance s2fam of the polygenic familial component,
and the residual variance s2o. The null model was ad-
justed for polygenic familial background based on the
kinship coefficient matrix Φkin = ZZT using R-packages
kinship2 and coxme with R-function lmekin. The kernel
score test statistic is.

Q ¼ RTMR ð2Þ
R = Po

1/2Y are standard normally distributed residuals
and matrix M= (Po

1/2K Po
1/2)/2 incorporates the kernel

[6]. Po = Vo
−1–Vo

−1X(XTVo
−1X)−1XTVo

−1 is the null projec-
tion matrix with Vo = s2oI + s2famZZ

T. The p values for test
statistic (2) were calculated by Davies’ exact method [13]
with the R package CompQuadForm from sample esti-
mates Q and all eigenvalues of matrix M.

Kernels and single-nucleotide polymorphism weights
We applied all kernel functions on allele dosage data gi, gj
(for pairs of subjects i, j) on NSNP biallelic SNP markers.
The kernel matrix entries are

Linear kernel Kij ¼ gi
TWgj ð3Þ

Radial basis function RBFð Þ kernel Kij

¼ exp −μ−1 � gi−gj
� �T

W gi−gj
� �� �

ð4Þ

with diagonal weight matrix W. The linear kernel (3)
does not allow for SNP interactions opposed to the RBF
kernel (4), which yields polynomial models. Dosage
weights are normed Wmm = f(νm)/∑mf(νm) for any
chosen SNP set m = 1,…,NSNP and depend on the minor
allele frequency (MAF) ν of the respective SNP. We con-
sidered: f(νm) = 1 (treating SNPs alike), f(νm) = 1/νm, as
well as f(νm) = Beta(νm,1,25) for νm equal to or less than
5 % and f(νm) = Beta(νm,0.5,0.5) for νm greater than 5 %
as suggested earlier [7]. Beta-density weights distinguish
MAFs more moderately than 1/ν-weights. For the RBF
kernel (4), the scale parameter μ was the average
weighted squared genetic difference between subjects
Σi,j((gi-gj)

TW(gi-gj))/n
2 multiplied by the effective num-

ber of independent SNPs in the tested set [14].

Strategies for combined testing of common and rare
variants
By default, the kernel score test, Eq. (2), is performed
with a kernel matrix Kall computed on all dosages with a
weighting of common and rare SNPs.
In contrast, Ionita-Laza et al. [7] recently suggested

computing the kernel separately for rare SNPs (Krare)
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and for common SNPs (Kcommon), respectively, in a region
of interest. Analogous to Eq. (2), this yields matricesMrare,
Mcommon, test statistics Qrare, Qcommon, and p values prare,
pcommon. The null model, Po and R were always the same.
The weighted sum test (WS) on common and rare vari-
ants has test statistic [7].

QWS ¼ 1–φð Þ⋅Qrare þ φ⋅Qcommon ð5Þ
Weight φ = (tr(Mrare∙Mrare)/(tr(Mrare∙Mrare) + tr

(Mcommon∙Mcommon)))
1/2 may be chosen such that (1−φ)∙

Qrare and φ∙Qcommon have the same variance. P values are
obtained by Davies’ exact method from sample esti-
mates QWS and all eigenvalues of matrix ((1 − φ)∙Mrare +
φ∙Mcommon). Alternatively, Fishers p value pooling can be
applied.

QFISHER ¼ −2ln prareð Þ−2ln pcommonð Þ ð6Þ
Under H0, QFISHER/(1 + 0.25∙cov) is chi-square distributed

with 16/(4 + cov) degrees of freedom [7]. With r = tr(Mrare∙
Mcommon)/(tr(Mrare∙Mrare)∙tr(Mcommon∙Mcommon))

1/2, the co-
variance between prare and pcommon is cov ≈ r∙(3.25 + 0.75∙r)
for 0 ≤ r ≤1 and cov ≈ r∙(3.27 + 0.71∙r) for −0.5 ≤ r ≤0. Only
test statistic (6) yields approximate p values; all
Table 1 Analysis of real data: real SBP and candidate gene AGTR1

SNP
panel

Weight Common SNPs Rare

MAF >5 % MAF

NSNP p value NSNP

AGTR1 with no flanking region, positions 148415571–148460795

GWAS equal 11 0.189 7

1/ν 11 0.113 7

SEQ equal 74 0.203 138

1/ν 74 0.160 138

AGTR1 with 30 kb flanking region, positions 148385571–148490795

GWAS equal 30 0.100 12

1/ν 30 0.045 12

SEQ equal 198 0.053 300

1/ν 198 0.039 300

AGTR1 with 500 kb flanking region, positions 147915571–148960795

GWAS equal 277 0.206 51

1/ν 277 0.151 51

SEQ equal 2170 0.192 2244

1/ν 2170 0.157 2244

AGTR1 containing LD-block, positions 148344702–148568958

GWAS equal 80 0.058 19

1/ν 80 0.040 19

SEQ equal 499 0.029 592

1/ν 499 0.027 592

Association of AGTR1 with real SBP was tested with a linear kernel on minor allele d
rare SNPs, respectively, were combined into joint tests: kernel Kall (default), weighte
other p values are obtained with Davies’ method and
are exact.

Results and discussion
Our test extension to families holds the nominal signifi-
cance level and correctly adjusts for a polygenic familial
variance component (as demonstrated in [6]). Table 1 lists
the p values obtained for association testing of AGTR1 on
real SBP, considering common SNPs (MAF >5 %) and rare
SNPs (MAF ≤5 %) as well as 3 joint tests (default test Kall,
WS, Fisher). Beta-weights (not shown) performed be-
tween equal weights and 1/ν-weights. The 1/ν-weight low-
ered p values particularly on common SNPs. AGTR1
association is suggested by common as well as rare SNPs.
Joint testing of rare and common SNPs was beneficial. In
particular, WS and Fisher test p values were often smaller
(and otherwise close to) the smallest p value of the separ-
ate rare and common SNP tests. When using ad hoc defi-
nitions of the AGTR1 flanking region, Fisher and WS p
values remained relatively stable and were also smaller
compared to the default test Kall. However, on the AGTR1
containing LD-block all joint tests performed highly simi-
lar, p values were the smallest and also relatively stable re-
gardless of SNP weights and SNP density.
SNPs Joint tests

≤5 % Default WS Fisher

p value p value p value p value

0.097 0.177 0.102 0.101

0.050 0.054 0.044 0.043

0.060 0.173 0.076 0.076

0.098 0.083 0.088 0.090

0.072 0.092 0.050 0.052

0.069 0.030 0.029 0.029

0.067 0.047 0.030 0.032

0.172 0.045 0.044 0.050

0.048 0.196 0.061 0.065

0.064 0.102 0.059 0.066

0.069 0.173 0.080 0.085

0.051 0.062 0.057 0.060

0.076 0.055 0.035 0.036

0.114 0.034 0.036 0.039

0.106 0.027 0.027 0.030

0.112 0.025 0.026 0.030

osage data for GWAS and sequence (SEQ); p ≤0.05 bold. NSNP common and
d sum test (WS), and Fisher’s p value pooling for correlated p values



Fig. 1 Test power on simulated SBP may greatly depend on SNP weights. Left and middle panels: Power of the kernel score test over 200 study
replicates of simulated SBP as function of the significance level for different SNP weights and SNP panels. Right panel: Power of joint tests of rare
and common SNPs at 2 significance levels α = 0.05, 10−6 when using 1/ν-weights on the sequence of gene-containing LD-blocks. Power estimates
for LEPR (positions 65743083 to 66106465) and FLT3 (28490385–28713642) (not shown) were highly similar to TNN
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Next, we analyzed LD-blocks that contain the genes
MAP4, TNN, LEPR, GSN, or FLT3. Figure 1 displays the
average test power on 200 data replicates of simulated
SBP. Sequence-derived variants were often more powerful
than GWAS with some exceptions (Fig. 1 left and middle
panels, black solid lines vs. gray dashed lines). The best
were often 1/ν-weights (circle), otherwise equal weights
(diamond) were favored. Particularly 1/ν-weights may be
beneficial on common SNPs (LEPR) and occasionally det-
rimental on rare SNPs (MAP4). The latter is an excep-
tional finding but consistent with Table 1 on candidate
gene AGTR1. On rare MAP4 SNPs, 1/ν-weights lowered
the power, especially when testing also extremely rare
SNPs (encircled plus), but less so when testing only MAF
equal to or less than 5 % SNPs that had at least 7 observa-
tions of the minor allele (filled circle; sequence data). On
gene-containing LD-blocks, all joint tests (default test Kall,
WS, Fisher) often had similar power (Fig. 1, right panel:
LEPR, FLT3, TNN with highly similar results [only TNN
shown]; GSN sequence). However, default test Kall was the
most powerful test on the gene with homogeneous strong
LD (MAP4: sequence [Fig. 1, right] and GWAS [not
shown]) and on the gene with the most variable LD struc-
ture (GSN: when using GWAS SNPs, not shown). Then,
Kall likely exploited SNP correlations better. When LD-
blocks were enlarged by flanking regions, WS and Fisher
often were slightly more powerful than Kall (results not
shown). The linear kernel had always similar or better
power than the RBF kernel (results not shown).

Conclusions
As the power of kernel methods increases through the
exploitation of SNP correlations [2], this ability should
be utilized fully by analyzing LD-blocks. SNP weights have
a far greater impact on test power than the kernel chosen.
Currently, the benefit of 1/ν-weights may be underesti-
mated for common SNPs. On rare SNPs, 1/ν-weights often
improve power, but can also be detrimental. Findings are
consistent with both real and simulated data. Our results
suggest using 1/ν-weights on all SNPs in a single kernel
Kall testing LD-blocks and only SNPs with sufficient minor
allele observations. Alternatively, one may use WS with
1/ν-weights on common SNPs and equal weights on rare
SNPs in the kernels. WS upweights the rare variant contri-
bution globally; see Eq. (5).
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