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Abstract

Background: The application of pathway and gene-set based analyses to high-throughput data is increasingly
common and represents an effort to understand underlying biology where single-gene or single-marker analyses
have failed. Many such analyses rely on the a priori identification of genes associated with the trait of interest.
In contrast, this variance-component–based approach creates a similarity matrix of individuals based on the expression
of genes in each pathway.

Methods: We compared 16 methods of calculating similarity for positive control matrices based on probes for the
genes used to model the simulated Genetic Analysis Workshop phenotypes.

Results: A simple correlation matrix outperforms the other methods by identifying pathways associated with the
simulated phenotypes at nearly twice the rate expected based on the associations of the component transcripts and
an approximate false-positive rate of 0.05.

Conclusions: This method has a number of additional advantages compared to single-transcript and pathway
overrepresentation analyses, including the ability to estimate the proportion of variation explained by each pathway
and the logistical advantage of only calculating the distance matrices once for each messenger RNA data set regardless
of the number of phenotypes. Additionally, it offers a significant reduction in the multiple testing burden over
individual consideration of each probe.
Background
Pathway and gene-set enrichment analyses were devel-
oped with several goals, including increasing the bio-
logical interpretability of genetic association and RNA
expression analyses [1]. Because these pathway tests are
based on the results of gene- or probe-based prior ana-
lyses, they rely on aggregation of individual effects. Here,
we developed a method to evaluate the influence of
variation in transcript expression data across the pathway
as a whole. This has the advantage of implicitly aggregat-
ing across effects of individual probes in the pathway,
thereby allowing the pathway to become the level of
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analysis instead of the gene. Additionally, calculating
similarity matrices at the pathway level reduces the com-
putational and statistical burden of running association
analyses of each probe against each phenotype. To do this,
we apply a variance component-based approach to assess
the proportion of phenotypic variability explained by simi-
larity matrices constructed from transcript expression data
for each gene in a given pathway. Ideally, this method will
enable the detection of pathways of significant integrated
effect, even if individual transcript levels do not contribute
significantly to the phenotypic variation.

Methods
Probe association and scaling
In the provided Genetic Analysis Workshop 19 data [2],
high-quality transcript abundance data from 20,634
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probes generated using the Illumina Sentrix Human
Whole Genome (WG-6) arrays was provided for 645 in-
dividuals in 20 extended families [3]. Two monozygotic
twins were removed from the analysis. Transcript abun-
dance values had been shifted to make the minimum
value 1.0 and log2 transformed followed by a quantile
normalization; we further adjusted the transcript abun-
dance values for sex, age, age^2, and sex*age interaction.
The residual values were used for all analyses. Probes
were annotated based on their RefSeq IDs and we se-
lected a single, representative probe per gene to avoid
upweighting the apparent effect of a gene in the pathway
matrix from the inclusion of multiple probes represent-
ing a single gene. More than 90 % of genes present in 1
or more pathways are represented by only a single
probe. Where there were more than 2 probes mapped to
a gene, we compared the expression of each pair of
probes using Pearson’s correlation and the probe with
the highest average correlation value was considered
most representative of the gene as a whole. Where only
2 probes were mapped to a gene, we selected the probe
with greater variance. Selected probes were scaled to
range between 0 and 1 so that all probes are weighted
equally in the similarity calculation; however, weights
could be applied at this step to test specific hypotheses
or reflect known biological features of the pathway.

Positive control pathways
Diastolic blood pressure (DBP) values were simulated
based in part on genetic variation in cis-regulatory and
coding variants with a real effect on the messenger RNA
(mRNA) probes drawn from the data set [2]. Through-
out, only the simulated DBP values from visit 1 in the
longitudinal data was considered. Although the mRNA
expression levels incompletely explain the phenotypic
variation and the simulated phenotypes were modeled
from the genetic rather than expression data, the rela-
tionships between the genetic and transcript values and
between the genetic and phenotype values remains the
same among the simulated phenotypes such that there
should be consistency in the relationship between tran-
scripts and the phenotype across the 200 simulations of
DBP. For all simulations of DBP, the heritability is 0.33.
Using SOLAR (Sequential Oligogenic Linkage Analysis
Routines) [4], we measured the association of each of
the 277 probes representing genes included in the DBP
simulation model with the 200 simulated DBP values.
We ranked the probes by the number of significant asso-
ciations (at α = 0.05) across the simulated DBP and cre-
ated a positive control “pathway” based on each decile.
We generated N ×N similarity matrices for the 643 in-

dividuals from the probe values in the positive control
pathways using 16 methods in the R library proxy [5]:
correlation [6], cosine similarity (angular) [6], extended
Jaccard similarity [7], Bhjattacharyya distance [8], Bray/
Curtis dissimilarity [6], Canberra distance [9], Chord dis-
tance [10], divergence distance [9], euclidean distance
[9], geodesic distance [10], Hellinger distance [11],
Mahalanobis distance [12], Manhattan distance [9],
Soergel distance [9], Tschebyscheff/Chebyshev distance
[9], and Whittaker distance [13]. Where distance metrics
were calculated, distances are converted to similarities
using the formula 1/(1 + distance).
For each of the 200 replicates, a polygenic null model

was generated for simulated DBP and negative-control
phenotype Q1 using SOLAR. The Q1 trait, which has a
heritability of zero, was modeled independently of tran-
script and genetic data and should not be associated
with any pathway. These polygenic null models include
the expected kinship matrix derived from the pedigree
with sex and age as covariates and serves as the model
to which the similarity matrices are compared. We con-
sidered each similarity matrix separately as an additional
variance component and applied a likelihood ratio test
(LRT) to determine if the positive control pathway ex-
plains significantly more of the variation in the pheno-
type than kinship alone (the null model). For
consistency with the individual probe analysis, signifi-
cance was determined at α = 0.05 for the p values de-
rived from the LRT. In these analyses, we used the
SOLAR-generated 2φ matrix based on expected kinship
from the pedigree; however, an empirical kinship matrix
generated from other genetic data or a similarity matrix
from the full set of probes can be used in place of or in
addition to the 2φ matrix [14].

Pathway selection
For the 5 similarity methods showing the largest number
of associations in the positive control pathways across
the 200 replicates, similarity matrices were calculated for
723 pathways taken from Pathway Studio 8.0 (Ariadne
Genomics Inc., Rockville, MD, USA). The phenotypic
variation explained by these similarity matrices in the
simulated DBP, Q1, and real DBP values was assessed.
These 723 pathways represent a wide variety of basic
cellular functions, disease-specific gene sets, immune re-
sponse, and signaling pathways. However, this method is
not limited by the choice of pathway or gene set. It can
be applied to any set of probes of interest to the
researcher.

Results
Comparison of distance calculations
Using a nominal significance threshold (α = 0.05), only 2
genes—F2RL3 and B3GAT1—are independently associ-
ated with DBP in more than half of the 200 simulations.
The probes in the top decile are associated with DBP in
an average of 59.1 simulations (29.6 %), whereas those in



Table 2 Formulas for selected distance matrix calculations

Method Formula

Bhjattacharyya distance sqrt(sumi (sqrt(xi)–sqrt(yi))
2)

Correlation xy/sqrt(xx * yy) for centered x,y

Divergence distance sumi (xi-yi)^2/(xi + yi)
2

Euclidean distance sqrt(sumi (xi-yi)
2))

Extended Jaccard distance xy/(xx + yy-xy)
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the bottom decile have an average of just 2.04 associa-
tions in the 200 simulations (1.0 %). The average num-
ber of associations falls off steeply beyond the first decile
(Table 1).
Table 1 shows the proportion of simulations in which

the positive control matrices are associated with DBP.
The 5 listed similarity methods—Bhjattacharyya distance
(bhja), correlation (corr), extended Jaccard distance
(ejac), euclidean distance (eucl), and divergence distance
(dive)—outperformed the average number of associa-
tions for the probes included in the pathway. As ex-
pected, all methods showed more associations with
simulated DBP in the higher decile pathways where indi-
vidual probes were more likely to be associated with
DBP. The correlation and extended Jaccard methods
substantially outperform the other methods with the
highest percentage of associations across the simulations
of DBP.
In contrast, there is no pattern of associations of the

simulated pathways with the negative control Q1 pheno-
type. Using an α = 0.05 threshold, the number of false-
positive associations is approximately what would be
expected. The correlation method appears to have a
slightly inflated false-positive rate, although this may be
the result of kinship detected by the similarities of ex-
pression data in the families that is incompletely
accounted for by the expected kinship matrix included
as the null model.

Experimental pathway matrices
Table 2 shows the formulas for the 5 top similarity
methods selected to analyze the Pathway Studio path-
ways. None of the Ariadne pathway matrices were sig-
nificantly associated with DBP in more simulations than
the top 3 positive control pathways. This is to be
expected as the experimental pathways are unlikely to
contain exclusively relevant genes. However, several real
Table 1 Percentage of simulated phenotypes associated with positi

Simulated DBP

Matrix Average (%) bhja (%) corr (%) dive (%) ejac (%)

1 29.6 34.2 65.0 34.0 61.5

2 18.1 23.5 55.0 14.0 50.0

3 13.3 13.2 34.5 18.5 31.5

4 10.6 4.0 35.0 4.5 28.5

5 8.1 4.5 16.0 4.5 14.5

6 6.0 1.0 7.0 3.0 6.0

7 5.2 1.5 7.0 4.5 6.0

8 3.4 0.0 2.5 2.5 2.5

9 2.5 0.0 2.5 2.0 2.5

10 1.0 0.0 0.5 1.0 1.0

bhja Bhjattacharyya distance, corr correlation, dive divergence distance, ejac extend
pathways calculated using the extended Jaccard and
basic correlation methods were significant at frequencies
similar to that seen for the fourth or fifth decile pathway
(20 to 30 % or simulations). These methods also per-
formed best for the control pathways. With the excep-
tion of the divergence method, which shows deflation,
results from the Pathway Studio pathways show inflation
(λ = 1.20 to 1.44) when associated with the DBP simula-
tions but not with Q1. Figure 1 shows the observed ver-
sus expected χ2 values for the correlation method for
simulated Q1 (λ = 1.01) and DBP (λ = 1.25), as well as
the real data. The correlation method produces the best
results with 5 Pathway Studio matrices significantly as-
sociated with DBP in 20 to 25 % of simulations. The top
Pathway Studio pathways are reasonable candidates with
6.7 % of genes in the pathways included as causal probes
in the model. One pathway calculated with the correl-
ation method is significantly associated with simulated
DBP, despite containing no probes independently associ-
ated with the simulated phenotypes. Although this ap-
pears to be a false positive, it is possible that the genetic
variants underlying these probes are in linkage disequi-
librium with 1 or more genetic variants that formed the
basis of the simulation.

Real diastolic blood pressure
When the 5 similarity methods are applied to the real DBP
data, the minimum p values for the LRT are approximately
ve control matrices by similarity calculation method

Q1

eucl (%) bhja (%) corr (%) dive (%) ejac (%) eucl (%)

36.0 1.0 5.5 3.5 3.5 1.5

25.0 0.0 3.5 1.5 2.5 0.0

15.0 1.5 6.5 1.0 5.5 2.0

8.5 0.5 4.5 0.0 3.5 1.0

4.5 0.5 4.5 1.5 5.0 0.5

1.0 1.0 7.0 0.5 4.5 0.5

2.0 0.5 3.0 1.5 3.0 0.0

0.5 0.5 3.5 0.0 2.5 0.5

0.0 1.5 4.0 1.5 4.5 1.5

0.0 1.0 3.5 1.5 3.0 1.0

ed Jaccard distance, eucl euclidean distance
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Fig. 1 Expected vs. observed χ2 values for correlation matrices
associated with (a) Q1, (b) simulated DBP, and (c) real DBP
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5 × 10−3, failing to surpass the Bonferroni-corrected
threshold for 723 pathways. This may be a result of the
relatively low heritability of DBP (0.33). Twelve pathways
show a nominally significant result: Focal junction assem-
bly, cleavage of lamina in apoptosis, systemic lupus erythe-
matosus, glycan catabolism, TGFi, OA transport, fatty
acid biosynthesis, NF-1, Myc Mad Max, type 1 diabetes
mellitus, and triacylglycerols degradation. The first 3 of
these pathways contain probes with previous associations
with DBP in this data set. Any analysis of gene expression
data must consider the directionality of effect. The appear-
ance of pathways involved in the production and regula-
tion of glycans, triacylglycerols, and fatty acids may be
from a phenotypic correlation between individuals with
high blood pressure and cardiovascular disease or other
outcomes related to the metabolic syndrome. Regardless
of the directionality of effect, their appearance among the
top pathways is sensible.
The proportion of phenotypic variance explained by

each pathway can also be obtained from comparing the
null model to one including the matrix-derived variance
component. The majority of the nominally significant
pathways explain approximately 1 % of the overall vari-
ation in DBP. However, 2 large pathways—focal junction
assembly and systemic lupus erythematosus—explain 4
and 6 % of the phenotypic variation, respectively. Each
of these pathways contains 2 probes independently asso-
ciated with DBP.
To determine if larger pathways were simply capturing

more of the total transcript variation and were therefore
more likely to be associated with any phenotype, the χ2

values for the real DBP were plotted against pathway
size (Fig. 2). No correlation was seen.

Discussion
The relatively weak relationship between the simulated
DBP values and the transcript data makes this a more
conservative test than if DBP had been modeled directly
from the expression data. Despite this limitation, the use
of similarity matrices generated from sets of probes in a
variance component-based pathway approach outper-
formed a single-probe association test. Specifically, the
observed number of associations with simulated DBP
was higher for the correlation and extended Jaccard
similarity matrices for positive control pathways contain-
ing probes for genes modeled to be causative than the
average for the probes contained in those same control
pathways.
Nominal p values were used across all analyses for

similarity of comparison between individual probe asso-
ciations and pathway similarity matrices, but consider-
ation of the p values illustrates the reduction in the
number of tests when the pathway becomes the unit of
initial analysis. In the single-probe analyses, none of the



Fig. 2 Pathway size vs. chi-squared value in real data
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17,265 probes reached a Bonferroni-corrected p value of
2.9 × 10−6. In contrast, multiple pathways surpassed the
Bonferroni-corrected critical p value of 6.9 × 10−5 for the
simulated phenotypes across all similarity methods.
When the correlation method is used to assess the effect
of the Pathway Studio pathways on the real DBP pheno-
type, none of the pathways are significantly associated
after multiple testing. However, several of the nominally
significant pathways are plausible candidates for contrib-
uting to DBP. In addition to significantly reducing the
multiple testing burden, this method, like all pathway-
based tests, also serves to identify potentially important
biological pathways instead of isolated genes.
Although this method should allow for the detection

of pathways containing a large number of genes just
below the significance threshold, it is difficult to clearly
differentiate these associations from false positives based
on this simulation. Additionally, the method of equally
weighting the probes is problematic with pathways
containing large numbers of genes as it may dilute the
effect of these genes of moderate effect. Weighting based
on additional biological information could improve the
performance. Furthermore, the method will likely be
more effective where the heritability of the phenotype is
higher and expression explains a larger proportion of the
variance.

Conclusions
The use of a correlation matrix to generate variance
components for pathways or gene-sets provides a means
for detecting multiple genes that together contribute to
phenotypic variation but cannot be detected individually.
The correlation matrix is simple to calculate from any
type of input and the same matrices can be used to
analyze all available phenotypes in a data set, saving
computation time. Additionally, the LRT is straightfor-
ward to implement in SOLAR with a single additional
variance component, but more complex models incorp-
orating multiple pathways or using an empirical kinship
matrix as a null model could be incorporated. As data
sets grow, this method, applied to transcript or geno-
typic data, provides a useful method for prioritizing
biological pathways for further investigation while avoid-
ing the multiple-testing burden.
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