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Abstract

In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of

departure from normality of the trait, and (c) the position of the SNVs on type | error rates were investigated in the
Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type | error rate, 5
simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the
gamma trait (logyo and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was
tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type | error rates
were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type | error
rates for non—-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average
type | error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type |

error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on
the uniformity of the distribution of the location of SNVs with a type | error.

Background

Recent advances in sequencing technologies have made
it more affordable to sequence whole exome data. In
next-generation sequencing data, the proportion of rare
variants (minor allele frequency [MAF]<0.05) is sub-
stantially larger than the proportion of more common
variants (MAF = 0.05) typically used in genome-wide as-
sociation studies (GWAS). However, these rare sequence
variants present a challenge because there are often too
few rare alleles for traditional statistical tests, making it
more difficult to identify rare variants that are associated
with the trait of interest. Also, the increased density of
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next-generation sequence variants makes it difficult for
traditional methods to identify independent associations
in a region of interest because of multicollinearity.
Although it is known from statistical theory that compar-
ing error rates from non-normal distributions to normal
distributions results in inflation of type I error [1, 2], the spe-
cific role of the frequency of the minor allele with respect to
type I error in this situation is not clear. Tabangin et al. [3]
reported that rare single-nucleotide polymorphisms (SNPs)
did not show an increased type I error rate for tests of asso-
ciation, although they did note that there was an increase in
type I error rate at a critical value of 107 In this study, we
used the Genetic Analysis Workshop (GAW) 19 whole ex-
ome sequence data [4] on unrelated samples to explore the
effects on the average type I error rate of the MAF of the
single nucleotide variants (SNVs, defined here as variants
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without constraints on the MAF) for different null trait dis-
tributions and critical values.

Furthermore, Papanicolaou et al. [5] noted an increase
in the type I error rate for short tandem repeat polymor-
phisms (STRPs) at the telomeres in linkage analysis. The
distribution of the physical position of SNVs was also in-
vestigated in an attempt to confirm or refute this finding.

Methods

Genotype data

VCFtools [6] was used to obtain alternative allele
counts (NALTT field) for each biallelic SNV from the
odd-numbered chromosomes for the 1943 unrelated
samples. Alternative allele counts were converted to 2-
allele genotype calls. The MAF for each SNV was calcu-
lated with PLINK [7]. All monomorphic SNVs (MAF = 0)
and SNVs with greater than 5 % missing were excluded,
leaving 313,340 SNVs for analysis.

Trait data

To investigate the average type I error rate, 2 quantita-
tive traits were simulated under the null hypothesis of no
genetic effect: one from a standard normal distribution
(with mean 0 and variance 1) and one from a gamma dis-
tribution, using the “rgamma” function in R with shape
parameter 3 and scale parameter 20. In addition, 2 trans-
formations were performed on the gamma-distributed
trait to satisfy the normality assumption in regression ana-
lysis: the log;o transformation and the rank-based inverse
normal transformation (RIT). Trait Q1, provided by GAW
19, was also tested. A total of 200 replications for each of
these 5 null traits were generated.
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Statistical analysis

Tests of association between each SNV and each null trait
were determined with simple linear regression as imple-
mented in PLINK [7]. Type I error rates were estimated
with all the SNVs in a specified MAF class as shown in
Figs. 1 and 2. The minimum number of observations for
the determination of average type I error rate was 200 rep-
lications times the 3497 observations in the smallest class
(699,400 observations). Critical values of both 0.001 and
10™ were considered as thresholds for defining a type I
error.

Tests of the uniformity of the distribution of the locations
of the single nucleotide variants with any type | error
Two Chi-squared goodness of fit tests were used to de-
termine whether the SNVs with any type I errors in the
200 replicates were uniformly distributed. The uniform-
ity of type I errors was tested among groups defined as
(a) chromosomes and (b) 10 Mb intervals.

Results

Table 1 summarizes the observed mean, variance, skew-
ness, and kurtosis averaged over 200 replicates of each
trait used in this study.

Figure 1 summarizes the SNVs by MAF. Extremely rare
SNVs were defined as any SNV with MAF less than
0.0025 and were categorized by counts of the minor allele
for these classes. There were a total of 241,456 extremely
rare SNVs (77 % of all SNVs considered), and more than
half of those occurred only once per sample. Rare SNVs
were defined as those with MAF between 0.0025 and 0.05
and common SNVs as those with MAF greater than 0.05.
Rare and common SNVs were categorized by MAF range.
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Fig. 1 Frequency of SNVs by MAF
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Fig. 2 Distribution of type | error rate by MAF. Type | error rate versus MAF. Different color/symbols indicate different null traits. Each point
indicates average type | error rate at the critical level of 10 of SNVs grouped by MAF; extremely rare variants (MAF < 0.0025) are classified by
number of occurrences of the rare allele, while rare (0.0025 < MAF < 0.05) and common (MAF = 0.05) ones are classified by MAF range
J

Type | error rate vs. minor allele frequency of the single
nucleotide variant, the degree of departure from
normality of the trait, and the critical value

Figure 2 shows the type I error rates for a critical value
of 10 by MAF of the SNVs for all 5 traits. There was
inflation of type I error rate for a given critical level
based on the MAF of the SN'Vs and on the degree of de-
parture from normality of the trait. For the non-nor-
mally distributed traits (gamma and log;o-transformed
gamma), there was a substantial inflation of type I error
rate for rare and extremely rare SNVs (MAF < 0.05), but
not for common SNVs (MAF 2 0.05); the type I error
rates increased as the MAF decreased. The inflation of

Table 1 Estimates® of the mean, variance, skewness, and kurtosis
of each simulated trait

Distribution Mean Variance Skewness Kurtosis
Normal —-0.003 1.00 -0.001 3.00
Gamma 59.97 1197.63 1.15 497
Logio gamma 1.70 0.07 -0.62 3.77
RITPgamma 00 1.00 0.0 298
Q1 4134 11336 -0.03 299

*These values are averages over 200 replicates for each trait
PRank-based inverse normal transformation

the type I error rate was greatest for the gamma trait
and somewhat smaller for the more normally distributed
log;o-transformed gamma. The type I error rates for the
normal and rank-based inverse normal transformed
gamma traits were not inflated and had the nominal type
I error rate (107°). Inflation was greatest for the gamma
trait for singleton SNVs, more than 150 times the nom-
inal level. However, the amount of inflation depended on
the critical value used. For example, with the critical
level of 10” the type I error rate for the gamma trait for
singleton SNVs was 8 times the nominal value (results
not shown). It is important to note that there was no in-
flation of type I error rates for normally distributed traits
at any critical level, regardless of the MAF. Trait Q1 was
nearly normally distributed, and it did not show inflated
type I error rate for rare or extremely rare SNVs. How-
ever, type I error rates for common SNVs were higher
than expected.

Table 2 P-values for goodness of fit tests of uniformity of the
distribution of SNVs with any type | error

Test among Normal Gamma Log;p gamma RIT gamma QI
Chromosomes ~ 0.113 0.880 0.338 0.006 0.008
10 Mb intervals  0.234 0.966 0.088 0.001 0.007
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Tests of uniformity of the distribution of type | errors
Table 2 displays the p values for both tests for each of
the 5 traits with type I errors defined using a 107
threshold. Overall, the results were neither consistent
nor conclusive in terms of the transformation.

Discussion

In this study, the effects the MAF of the SNVs, the de-
gree of departure from normality of the trait and the
position of the SNVs on type I error rates were investi-
gated on 5 simulated “null” traits, each with 200 repli-
cates, and the genotypes from the GAW19 whole exome
sequencing data in the unrelated samples.

Observed type I error rates for rare and extremely rare
SNVs (MAF <0.05) for non—normally distributed traits
(gamma and log;-transformed gamma) increased over
the nominal level with increasing departure from normal-
ity, with decreasing MAF of the SNVs and with decreasing
critical level. However, observed type I error rates for nor-
mally distributed traits were close to the nominal level re-
gardless of the MAF of the SNVs. Trait distributions with
differing degrees of departure from normality made a sub-
stantial difference in the type I error rate for the test of as-
sociation with simple linear regression with rare SNVs.
The gamma-distributed trait showed the largest differ-
ences between observed and expected type I error rates.
When the gamma trait was log;o-transformed to be more
normal, the difference became smaller. When a more ex-
treme transformation (RIT) was used, the trait was effect-
ively normally distributed and did not show inflated type I
error. This indicates that transforming non—normally dis-
tributed traits helps to control type I error rate. No infla-
tion of type I error rate was observed for common SNVs
(MAF >0.05) for the 2 non—normally distributed traits
considered (gamma and log;o-transformed gamma).

Trait Q1 behaved similarly to the normally distributed
trait in that it did not produce increased type I error rate
among rare and extremely rare SNVs. Unlike the other
tested traits, however, Q1 showed a slightly higher than ex-
pected type I error rate for the common variants (MAF >
0.05). Trait Q1 was generated under a different null hy-
pothesis from the other 4 traits that were simulated for
this study.

The results of the tests of uniformity of the distribu-
tion of the SNVs with type I errors showed no obvious
positional effect with respect to trait transformation. It is
relevant to note that Papanicolaou et al. [5] reported
increased type I error in the telomeres with Haseman-
Elston linkage analyses using STRPs; however, the differ-
ences for association tests were minimal. The results
from this study likely corroborate the association data,
but the exome data had poor coverage of the telomeres,
limiting what can be inferred.
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Conclusions

In summary, both rare and extremely rare SNVs produced
more type I errors than the nominal rate for traits with de-
partures from normality. This effect was ameliorated by
transforming the trait to be more normal. Common variants
seemed to be protected from this increase in type I error for
most of the tested traits.

Declarations

This project was supported in part by the Division of Intramural Research at
the National Human Genome Research Institute, National Institutes of Health
(NIH). The GAW is supported by NIH grant R0T GM031575.

This article has been published as part of BMC Proceedings Volume 10
Supplement 7, 2016: Genetic Analysis Workshop 19: Sequence, Blood
Pressure and Expression Data. Summary articles. The full contents of the
supplement are available online at http://bmcprocbiomedcentral.com/
articles/supplements/volume-10-supplement-7. Publication of the
proceedings of Genetic Analysis Workshop 19 was supported by National
Institutes of Health grant ROT GM031575.

Authors’ contributions

TSA, HS, CMJ, AIMS, and AFW designed the study. TSA, HS, and JAS
generated phenotype data, analyzed and summarized results. TSA, HS, JAS,
CMJ, AJMS, and AFW drafted, reviewed, and edited this paper. TSA, HS, and
JAS contributed equally to this work. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 18 October 2016

References

1. Feingold E. Regression-based quantitative-trait-locus mapping in the 21st
century. Am J Hum Genet. 2002,71(2):217-22.

2. Goh L, Yap VB. Effects of normalization on quantitative traits in association
test. BMC Bioinformatics. 2009;10:415.

3. Tabangin ME, Woo JG, Martin LJ. The effect of minor allele frequency on
the likelihood of obtaining false positives. BMC Proc. 2009;3 Suppl 7:541.

4. Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, Johnson M,
Peralta JM, Manning AK, Wood AR, et al. Omics squared: human genomic,
transcriptomic, and phenotypic data for Genetic Analysis Workshop 19. BMC
Proc. 2015;9 Suppl 8:52.

5. Papanicolaou GP, Justice CM, Kovac IM, Sorant AJ, Wilson AF. Critical values
and variation in type | error along chromosomes in the COGA dataset using
the applied pseudo-trait method. BMC Genet. 2005;6 Suppl 1:554.

6. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. The variant call format
and VCFtools. Bioinformatics. 2011,27(15):2156-8.

7. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet.
2007;81(3):559-75.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7
http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7

	Abstract
	Background
	Methods
	Genotype data
	Trait data
	Statistical analysis
	Tests of the uniformity of the distribution of the locations of the single nucleotide variants with any type I error

	Results
	Type I error rate vs. minor allele frequency of the single nucleotide variant, the degree of departure from normality of the trait, and the critical value
	Tests of uniformity of the distribution of type I errors

	Discussion
	Conclusions
	Declarations
	Authors’ contributions
	Competing interests
	References

