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Abstract

Estimating the causal effect of a single nucleotide variant (SNV) on clinical phenotypes is of interest in many
genetic studies. The effect estimation may be confounded by other SNVs as a result of linkage disequilibrium as
well as demographic and clinical characteristics. Because a large number of these other variables, which we call
potential confounders, are collected, it is challenging to select and adjust for the variables that truly confound the
causal effect. The Bayesian adjustment for confounding (BAC) method has been proposed as a general method
to estimate the average causal effect in the presence of a large number of potential confounders under the
assumption of no unmeasured confounders. In this paper, we explore the application of BAC in genetic studies
using Genetic Analysis Workshop 19 exome sequencing data. Our results show that BAC can efficiently estimate the
causal effect of genetic variants with adjustment for confounding. Consequently, BAC may serve as a useful tool for
genome-wide association studies data analysis to effectively assess the causal effect of genetic variants and the
impact of potential interventions.
Background
In genetic studies, a large number of baseline and gen-
etic variables are observed. The selection and adjustment
of these covariates is essential for estimating the average
causal effect (ACE). Recently, a method called Bayesian
adjustment for confounding (BAC) [1, 2] was proposed
to account for the uncertainty in confounder selection
while estimating the ACE of a certain exposure variable.
BAC uses a Bayesian model averaging (BMA) [3] ap-
proach to estimate the ACE by taking a posterior
weighted average of ACE estimates from a battery of
models with adjustments of different sets of covariates.
A key feature of BAC is that it incorporates the strength
of associations between covariates in the model and the
exposure into the prior for each individual model. This
is different from the regular BMA method, which assigns
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uniform prior weight to each model. It has been shown
that large posterior weights in BAC are usually given to
models that have fully adjusted for confounding so that
an unbiased estimate of ACE can be obtained.
In this paper, we explore the application of BAC in

estimating the ACE of single-nucleotide variants (SNVs).
Although BAC has been applied to environmental and
clinical studies [1, 2], to our knowledge, this is the first
time for this method to be applied to genetic studies.
We illustrate the application of BAC using Genetic
Analysis Workshop 19 (GAW19) sequencing data.
Briefly, these data consist of hg19-aligned whole exome
sequences from 1943 unrelated Hispanic subjects as part
of Type 2 Diabetes Genetic Exploration by Next-
generation sequencing in Ethnic Samples (T2D-GENES)
Project 1. We focus on evaluating the causal effect of
SNVs in MAP4 and utilize the 200 simulated phenotype
sets from these individuals [4].
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Methods
The causal model
We adopt the Rubin causal model [5, 6] to estimate the
ACE of a certain SNV, which we call the exposure, on
systolic blood pressure (SBP), which we call the out-
come. Let Y(X) be the potential outcome an individual
would have if the genotype was X. Here, we assume an
additive mode of inheritance so that X is the number of
alternative alleles, ie, X ∈ {0, 1, 2}. The observed outcome
Y is the outcome associated with an individual’s actual
genotype: Y = ∑x = 0

2 Y(x)I{X = x}, where I{X = x} is one if
the individual’s genotype is x or zero otherwise. Thus,
the ACE for having one alternative allele is Δ = E{Y(1)} −
E{Y(0)}. Suppose the true set of confounders, U*, can be
identified. Under the strong ignorability assumption [7],
which assumes the potential outcomes and X are inde-
pendent given U*, E{Y(x)} = E{E(Y|X = x, U*)}. Therefore,
Δ = E{E(Y|X = 1, U*)} − E{E(Y|X = 0, U*)}. If we further
assume a linear regression model for Y on X and U*, it
can be shown that the ACE is equal to the correspond-
ing model coefficient of X.
In practice, however, it is usually uncertain which co-

variates are true confounders. This is particularly chal-
lenging in genetic association studies where many
variants are correlated and the true causal variants are
unknown. The bias and variance of the ACE estimate
can depend strongly on which covariates are included
for adjustment in the analysis. To deal with this prob-
lem, we propose the following approach.

The Bayesian adjustment for confounding method
Let U = {U1, ⋯,UM} be the set of potential confounders.
We assume no unmeasured confounders so that U⊇U*.
To adjust for confounders and estimate the ACE, we
jointly consider two models: a logistic regression model
for the SNV of interest (the exposure model) and a linear
regression model for the outcome (the outcome model).
Specifically,
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where αm

X and αm
Y are indicators for the inclusion (= 1)

or exclusion (= 0) of Um in the exposure and the
outcome models, respectively; m indexes SNVs and i
indexes individuals. For convenience, we refer to param-
eter vectors αX = (α1

X,⋯, αM
X )T and αY = (α1
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Y )T as

“models.” For regression coefficients, β and δ, we use a
notation that explicitly keeps track of the fact that these
coefficients differ in meaning with the αs. Furthermore,
to clarify the estimand, it is useful to consider the smal-
lest outcome model that includes all the true con-
founders. We denote that model by α*

Y. Our estimand,
the ACE of X on Y, is the coefficient of X in α*

Y, denoted
by β*.
As α*

Y is usually unknown, we use a Bayesian model
averaging approach to obtain the posterior of β* by taking
a weighted average across the posteriors under each pos-
sible model:
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where D = (X, Y, U) denotes the observed data. For a
model that contains α*

Y (meaning that the model in-
cludes all the covariates in α*

Y), its model coefficient of X
is also equal to β*. For a model that does not contain α*

Y,
its model coefficient of X may be different from β*. Con-
sequently, the approximation works well if the model
weight p(αY|D) concentrates on models that contain α*

Y.
Otherwise, it can be largely biased from the inclusion of
models not fully adjusted for confounders.
To ensure large weights are assigned to models that

contain α*
Y and based on the fact that confounders are ne-

cessarily associated with both X and Y, we propose to ob-

tain the posterior of αY by p αY Djð Þ ¼
X

αX p αX ;αY Dj� �
,

where the joint posterior of αX and αY is calculated by
assuming the following prior:
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where ω ∈ {1,∞) is a dependence parameter. When ω >
1, it increases the chance for a covariate associated with
X to be included into the outcome model. Such a covari-
ate, if also associated with Y, is likely to be a confounder.
Therefore, the above prior facilitates confounder selec-
tion by advocating the use of a covariate’s associations
with both the exposure and the outcome to determine
its inclusion in or exclusion from the outcome model.
It is likely to yield a posterior of αY that assigns mass
preferentially to models including all the true con-
founders [2].
In the implementation, we use the MCMCpack pack-

age in R to obtain posterior samples of βα
Y
for a given

αY. The posterior samples of αY are obtained by using
the MC3 method [8] where the Bayes factor comparing
different outcome models is approximated by a Bayesian
information criterion (BIC) approximation [1]. Codes
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that implement BAC are available at http://sweb.uky.
edu/~cwa236/BAC_GAW19.zip.

Data sets and data filtering
We consider GAW19 sequencing data, which consist of
hg19-aligned whole exome sequences from 1943 unre-
lated Hispanic subjects, as part of T2D-GENES Project
1. The corresponding phenotypic data are from the 200
simulated phenotypic data sets (including the null Q1
trait) generated by GAW19. Because of the lack of age
information, 81 subjects are dropped. We focus on the
SNVs in the MAP4 gene as well as those 5 kb up- or
downstream of MAP4. SNVs that have either zero minor
allele frequency (MAF) or low coverage (<20×) are fil-
tered out, which leaves a total of 94 SNVs. Among those
SNVs, 25 have true effects on SBP in the simulation
model.

Results
We evaluated the performance of BAC by using the
GAW19 sequencing data after applying the filtering as
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Fig. 1 ACE estimates. ACE estimates based on the “true model,” the “full m
position 47908815 (c and d) on chromosome 3. a and c are based on 200 sim
dashed line indicates the true ACE
described in the Methods section. We considered SBP as
the outcome and evaluated the estimation of ACE for
two SNVs in the MAP4 gene: 1 common SNV at pos-
ition 47956424, chromosome 3 (MAF = 0.3435) and one
rare SNV at position 47908815, chromosome 3 (MAF =
0.0026). The set of potential confounders include age,
sex, their interaction, smoking status, and all the SNVs
(other than the SNV of interest) in MAP4 as well as
those 5 kb up- or downstream of MAP4. We applied
BAC to the set of potential confounders to automatically
select and adjust for confounders and to estimate the
ACE. We set the dependence parameter ω equal to ten
because it appears to provide a good balance between in-
cluding important confounders and excluding variables
only associated with the exposure based on our previous
experience. For comparison, we considered the “true
model,” which includes age, sex, their interaction, and
the 25 SNVs with true effects, and the “full model,”
which includes all the potential confounders. Figure 1
and Table 1 summarize the results. In all scenarios, the
standard error of ACE estimates based on BAC is
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odel” and BAC for two MAP4 SNVs at position 47956424 (a and b) and
ulated phenotypic data sets; b and d are based on 200 Q1 data sets. The
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Table 1 Estimation results. Estimation of the ACE on SBP for two MAP4 SNVs at position 47956424 and position 47908815,
chromosome 3

SNV Data set Method BIAS SEE SSE RMSE

47956424 (MAF = 0.3435) Simulated phenotype “True model” 0.166 1.206 1.121 1.131

“Full model” 0.663 4.215 4.280 4.320

BAC 0.440 1.587 1.277 1.347

Q1 “True model” 0.006 0.996 1.105 1.102

“Full model” 0.025 3.483 3.591 3.582

BAC 0.089 1.313 1.203 1.203

47908815 (MAF = 0.0026) Simulated phenotype “True model” 1.617 3.771 3.844 4.161

“Full model” 5.115 6.89 6.739 8.447

BAC 3.438 5.322 5.329 6.331

Q1 “True model” 0.129 3.115 3.113 3.108

“Full model” 0.369 5.694 5.621 5.619

BAC 0.179 4.419 3.964 3.958

BIAS is the difference between the mean of estimates of ACE and the true value; RMSE is the root mean square error; SEE is the mean of standard error estimates;
SSE is the standard error of the estimates of ACE
Results are based on 200 simulated phenotypic or Q1 data sets. In simulated phenotypic data, the true ACE of SNV at position 47956424 (47908815) is −6.094
(−7.732). In Q1 data, the true ACE of the two SNVs is zero
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smaller than that based on the “full model.” As an
example, for the ACE estimation of SNV 47956424 by
using simulated phenotypic data, the sample standard
error based on BAC is 1.277, which is much smaller
than the value 4.280 based on the “full model” and is
close to the value 1.121 based on the “true model.” The
root mean square error (RMSE) based on BAC is also
smaller than that based on the “full model.” Therefore,
by performing variable selection and model averaging,
BAC is able to effectively reduce the variation and yield
a more precise estimate of the ACE.

Discussion
BAC jointly considers an exposure model and an out-
come model, which enables proper selection and adjust-
ment for confounders and yields significantly reduced
variation in ACE estimation. For simplicity, the exposure
model we consider in the paper is a logistic regression
model, where the genotype of the exposure is dichoto-
mized into containing at least one alternative allele or
not. One may extend the BAC method by considering a
polytomous regression model for the exposure model,
where the number of alternative alleles can be taken into
account. However, because the exposure model is only
used to identify important confounders to be adjusted
and the causal effect is estimated based on the outcome
model, BAC is relatively robust to the misspecification
of the exposure model as long as confounder identifica-
tion is not largely affected.
The dependence parameter ω indicates the prior

strength of connection between the exposure and the
outcome models. On the one hand, setting ω equal to
one assumes no connection between the two models.
Thus, the associations between potential confounders
and the exposure will not be accounted for in the vari-
able selection procedure, which may bias the ACE esti-
mation. One the other hand, setting ω equal to ∞ forces
all potential confounders that are in the exposure model
to be included in the outcome model. Thus, variables
that are only associated with the exposure but not with
the outcome may be included in the outcome model and
inflate the variation of ACE estimation. Therefore, we
recommend choosing a finite ω value that can achieve a
nice balance between bias and variation. Based on our
previous experience, setting ω equal to ten works well in
simulation scenarios. A more sophisticated method to
determine the optimal ω value can be found in Lefebvre
et al. [9].

Conclusions
The primary goal of genetic association analysis is detec-
tion of variants that correlate with some disease pheno-
type. Replicable associations between variants and many
diseases and related endophenotypes have been discov-
ered and subsequently followed with functional studies.
While insight into biological function supersedes this
primary goal of association study, as substantiated by the
era of candidate gene studies, these insights must be
pursued for complex disease associations.
The BAC method employed here aims to estimate the

causal effect of genetic variants on disease phenotype.
These effect metrics represent an attempt to bridge the
gap between association and function, while improving
the localization of disease-correlated variants. This paper
demonstrates that BAC is able to appropriately estimate
the causal effect and handle the complexity in the
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adjustment of confounding as a result of linkage disequi-
librium. Our finding that BAC provides a more efficient
ACE estimate than conventional methods suggests that
BAC has the potential to be widely applied to genome-
wide association studies data to effectively assess the
causal effect of genetic variants and the impact of poten-
tial interventions.
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