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Abstract

Using data on 680 patients from the GAW20 real data set, we conducted Mendelian randomization (MR) studies to
explore the causal relationships between methylation levels at selected probes (cytosine-phosphate-guanine sites
[CpGs]) and high-density lipoprotein (HDL) changes (ΔHDL) using single-nucleotide polymorphisms (SNPs) as
instrumental variables. Several methods were used to estimate the causal effects at CpGs of interest on ΔHDL,
including a newly developed method that we call constrained instrumental variables (CIV). CIV performs automatic
SNP selection while providing estimates of causal effects adjusted for possible pleiotropy, when the potentially-
pleiotropic phenotypes are measured. For CpGs in or near the 10 genes identified as associated with ΔHDL using
a family-based VC-score test, we compared CIV to Egger regression and the two-stage least squares (TSLS)
method. All 3 approaches selected at least 1CpG in 2 genes—RNMT;C18orf19 and C6orf141—as showing a causal
relationship with ΔHDL.

Background
Individuals and families in GAW20 data participated in
the National Institutes of Health (NIH)-funded Genetics
of Lipid Lowering Drugs and Diet Network (GOLDN)
study of the effects of lipid-lowering drugs and diet on tri-
glycerides and other atherogenic phenotypes. DNA
methylation from the Illumina Infinium 450 K array, tri-
glyceride levels, and high-density lipoprotein (HDL) levels
were measured on participants before and after 3 weeks of
treatment with micronized fenofibrate. Previous studies
have identified strong associations between methylation at
4 cytosine-phosphate-guanine sites (CpGs) within CPT1A
on chromosome 11 and 2 lipid phenotypes [1], and found
genetic variants that demonstrated association with the
magnitude of the lipid response to treatment [2].
Statistically significant associations between methyla-

tion levels and blood lipids could arise from a causal re-
lationship, such that changes in methylation levels at a

particular locus induce changes in blood lipids. However,
there are many other reasons why a statistical associ-
ation might be seen, including the likely possibility of
confounding, where a third factor influences both the
methylation levels and the blood lipids. In the GOLDN
clinical trial, fenofibrate treatment may have induced
both changes in methylation levels as well as changes in
lipids, in the absence of any direct relationship between
these two measures. Our goal was to explore the use of
Mendelian randomization (MR) methods, a type of in-
strumental variable analysis, to try and elucidate the
causal relationships between methylation and blood
lipids in the GAW20 real data set. This may shed some
light on the mechanism of action of the treatment. As
there are single-nucleotide polymorphisms (SNPs) with
strong associations with CpGs on the Illumina array,
these might make good instruments in an MR analysis
exploring causality between methylation and lipids, to
distinguish between spurious association resulting from
confounding and a potentially causal relationship.
Strong SNP associations are needed for a successful

MR analysis. Although there are strong associations be-
tween pretreatment methylation levels and several gen-
etic variants, we did not see strong associations between
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changes in methylation levels (pre−/posttreatment) and
the SNPs. Consequently, here we have explored the po-
tential causal relationships between pretreatment methy-
lation and the HDL treatment response, that is, the
changes pre−/posttreatment (ΔHDL). Hence, we can be
sure that there is no reverse causation (lipid changes
cannot alter pretreatment methylation). Another key as-
sumption for MR analysis is that there is no pleiotropy,
such that the SNPs are associated with the outcome
(ΔHDL) only through the intermediate phenotypes
(methylation). Here, we also investigate the performance
of a new method that tries to account for potential plei-
otropy by selecting SNPs with strong associations with
the intermediate phenotype of interest, and little associ-
ation with potential pleiotropic phenotypes.

Methods
Based on genes identified as associated with ΔHDL in
family-based variance-component association tests (see
Zhao et al. [3]), we selected 10 genes to explore causal
relationships. Methylation probe sets were created to in-
clude all probes in a window defined by (start − 20 kb,
end+ 20 kb) of each gene, to capture probes that could
be implicated in cis-regulation. To adjust for potential
unexplained confounding, principal components (PCs)
capturing genome-wide variations in methylation levels
were calculated from 2000 randomly sampled probes
from all autosomes (see Zhao et al. [3]). The pretreat-
ment methylation levels and ΔHDL were then adjusted
for the fixed effects of the top 4PCs as well as age, sex,
smoking, center, fast time, and metabolic syndrome sta-
tus, and for a random effect with covariance based on
the kinship matrix, to capture effects resulting from fa-
milial relationships. Residuals were used for further MR
analyses. SNPs were selected in a large window around
each gene (start − 400 kb, end+ 400 kb). The large size
of these windows was necessary to ensure enough SNPs
for the constrained instrumental variables (CIV) method
described below. Missing values, approximately 0.5% of
all SNP data, were imputed using the K-nearest neighbor
method with the Bioconductor package impute. When
SNPs in the set were highly correlated (p > 0.8) with
neighboring SNPs, we kept only 1 SNP closest to the 5′
end of each cluster. The resulting SNP set is referred to
as the full set of SNPs (or F). Univariate linear models
were fit between the pretreatment methylation residuals
for each CpG near the selected genes, and each retained
SNP near the same gene. Based on these linear regres-
sion results, reduced sets of SNPs (R), with significant
F-statistics (p < 0.05), were constructed for use with
some of the MR methods.
MR analyses using two-stage least squares (TSLS) [4],

Egger regression [5], and our new method, CIV, briefly
described below, were performed to evaluate the

potential causal effects of variability in pretreatment
methylation levels (X) on ΔHDL (Y). In TSLS and Egger
regression, SNPs (G) are used to estimate the exposure
X̂ , and then the outcome, Y, is regressed on the esti-
mated X̂ to estimate the causal effect of X on Y. Egger
regression adjusts for some of the possible pleiotropic ef-
fects and also detects small sample bias.
The CIV method is designed to adjust causal effect es-

timates of X on Y when potential pleiotropic expo-
sures, Z, are measured [6]. Naïve inclusion of genotypes
with pleiotropic effects among SNPs to be used as in-
struments may lead to biased estimation of the causal ef-
fect. CIV finds a penalized linear projection orthogonal
to Z to construct a valid and strong instrumental vari-
able. A constrained optimization approach using
smoothed penalty functions forces approximately sparse
models. The strength of CIV instruments can be mea-
sured with a global F-statistic and the concentration par-
ameter [7]. The latter measures the overall association
between X and G, whereas the former also considers the
number of instruments used; if there are many weak in-
struments, this will be reflected in the F-statistic.
F-statistics< 10 are often considered weak instruments.
Simulation studies [6] have compared CIV with TSLS,
Egger regression, and other popular MR methods under
scenarios varying the instruments’ relative strength, val-
idity and pleiotropic directions, and showed that CIV es-
timates causal effects with little to no bias.
For CIV analysis, the neighborhood around each gene of

interest was partitioned into 2 subsets: a set of probes
where causal inference is desired ({X}: the methylation
probe set for each gene) and a set of CpGs whose poten-
tial pleiotropic effects are of concern ({Z}: methylation
probe sets for genes up to 100 kb on either side of the
probes in {X}). For each CpG in {X}, causal inference ana-
lysis was performed with CIV, TSLS, and Egger methods.
Only the CIV method also used the probe set {Z} for ana-
lysis. For CIV, the full set (F) of SNPs was used for ana-
lysis; for Egger and TSLS, both sets F and R were used as
instrumental variables. For all methods, bootstrap confi-
dence intervals, based on 200 bootstrap samples, were
constructed for the estimated causal effect of X on Y.

Results
From the results in Zhao et al. [3], we selected the 10
genes with the strongest associations between pretreat-
ment methylation levels and ΔHDL. Table 1 shows the
number of probes assigned to {X} and {Z} for each gene,
together with the numbers of SNPs in the full and re-
duced sets, and the number of probes associated with
ΔHDL in ordinary regressions. After MR analysis, poten-
tial causal associations were identified at only 2 of these
10 genes. Figure 1 shows the estimated causal effects for

Jiang et al. BMC Proceedings 2018, 12(Suppl 9):20 Page 30 of 258



all CpGs at RNMT;C18orf19 with CIV (Fig. 1a) and
TSLS (Fig. 1b), showing that nonzero causal association
was estimated at the same CpG, cg09685104, with these
methods. In contrast, Egger regression found no associ-
ated CpGs at RNMT;C18orf19. Even though TSLS and
CIV identified the same probe, the SNPs contributing to
the instruments differ; Table 2 shows that CIV instru-
ment was much stronger than the TSLS instrument. In
fact, for RNMT;C18orf19,only CIV constructed a strong
instrument (F-statistic> 10). The concentration param-
eter increases with the number of instruments, and

therefore looks smaller for CIV, which implements a
sparse solution. For C6orf141, there were differences be-
tween methods and between SNP sets in which CpGs
demonstrated causal associations. CIV (Fig. 1c) sug-
gested that 3 CpGs (including cg05829479) show causal
associations; in contrast, TSLS (Fig. 1d) and Egger re-
gression identified the same (and only one) probe,
cg05829479, using the reduced set (R). At both genes,
correlations between CIV instruments and Z were mini-
mized (maximum value:1.01e-15) while the raw correla-
tions between G and Z ranged from 0.1 to 0.5.

Table 1 Features of the probes (X, Z) and SNPs (G) analyzed at 10 genes selected due to the associations between methylation
levels and ΔHDL in Zhao et al. [3]
Gene CpGs: # in

gene a/# nearby
b (# genes nearby)

SNPs: # in
Set F/# in Set R

# probes
associated
with ΔHDL c

Gene CpGs: # in
gene a/# nearby
b (# genes nearby)

SNPs: # in Set F/# in Set R #CpGs associated with ΔHDL c

RNMT;C18orf19 15/31(4) 128/21 1 GTF2IRD2 6/20 (4) 0/0 1

MIR130B 3/77(9) 90/10 2 VPS25 d 11/41(19) 59/3 4

C6orf141 14/34(5) 53/8 2 SBSN d 8/45 (3) 102/4 1

TUBB3 20/214 (8) 0/0 1 TPM4 29/74 (7) 161/14 1

TBX15 109/57(1) 91/63 2 PARP15 17/60(5) 146/1 4
a Probes located within 20 kb of the gene of interest
b Probes within 20 kb of neighboring genes, and up to (±100 kb) from the gene of interest; ie, CpGs used as potential pleiotropic phenotypes in the CIV method
c Probes that showed significant associations in univariate analysis at significance level 0.01 with Bonferroni correction
d Only probes within 20 kb (instead of 100 kb) of neighboring genes around genesVPS25and SBSN were used as Z

Fig. 1 Causal estimates and 95% bootstrap confidence intervals for methylation levels on ΔHDL at CpGs in RNMT;C18orf19 (a; b) and C6orf141 (c;
d), using CIV (a; c) and TSLS (b; d) Gene location is indicated in blue. The significant probes identified by CIV/TSLS methods are marked with red
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Discussion
We compared 3MR methods to look for causal relation-
ships between DNA methylation and ΔHDL at 10 genes
that showed strong associations. At two of these genes,
at least 1 CpG demonstrated evidence of a causal rela-
tionship with both TSLS and our new method CIV. The
CIV method, as expected, finds stronger genetic instru-
ments (and less correlated with probes in neighboring
genes), as this is how it was designed. This does not,
however, appear to inflate false-positive findings. Across
the 100 simulated GAW20 data sets, we found no causal
associations with methylation levels and triglyceride
changes at the true CpG sites (results not shown). Fur-
thermore, here we found no causal associations at 8 of
the top 10 genes investigated.
One important advantage of the CIV method is that it

can automatically select valid instruments from a large
candidate SNPset, and does so to maximize instrument
strength while minimizing pleiotropic effects. We
recognize, however, that there may be potential for over-
estimation of the strength of the causal relationships
using all these MR methods as a result of the relatively
small sample size in the GAW20 data. The “winner’s
curse”, which leads to biased causal effect estimates,
could also happen here since the same data (GAW20) is
used for estimating both G→ X and X→ Y.Because CIV
contains a penalization step that excludes some SNPs
from the instrument, CIV should be less vulnerable to
overfitting than methods without penalized SNP
selection.
MR analysis with TSLS can be undertaken either with

1 SNP or with a set of SNPs. When SNPs showed weak
univariate associations with methylation, TSLS some-
times displayed computational singularities, thereby re-
quiring our reduced set of SNPs. In contrast, CIV
requires that the number of instruments be larger than
the number of pleiotropic phenotypes, requiring us to
use a large window around each gene to capture suffi-
cient SNPs.
GAW20 data does support some causal relationships

between pretreatment methylation levels and ΔHDL.
However, because the selected CpGs have not been

previously reported as associated with HDL, further in-
vestigation of the adjacent genes and selected CpGs in
larger sample sizes may advance understanding of the
determinants of HDL treatment responses.

Conclusions
When using MR to explore causal relationships between
pretreatment methylation and ΔHDL at 10 genes where
they were strongly associated, a new method, CIV, per-
formed automatic instrumental variable selection on a
large set of SNPs, constructed genetic instruments ac-
counting for potential pleiotropy, and found stronger in-
struments than TSLS or Egger regression. Potentially
causal relationships were identified at RNMT;C18orf19
and C6orf141.
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Table 2 MR results with CIV and TSLS at RNMT;C18orf19 and C6orf141 using the SNP sets F and R

Gene # SNPs
selected by CIV

Instrument strength of
CIV: F-stat/CP a

Instrument strength of
TSLS: F-stat/CP a

#Associated probes by CIV b

(# also naïve)
#Associated probes by TSLS c

(# also naïve)

RNMT;C18orf19 1 22.83/22.96 (F) 2.21/346.03
(R) 8.88/136.39

1(1) 1(1)

C6orf141 11 1.42/27.81 (F) 1.35/78.01
(R) 1.12/23.01

3(1) 1(1)

The number of associated probes based on 95% bootstrap confidence intervals is shown, and the instrument strength at the most strongly associated CpG is also
reported. Egger regression with SNP set F only identified the probe in C6orf141.
a F-stat/CP,F-statistic/concentration parameter
b Number of CpGs showing significant MR association with CIV (number of these probes also demonstrating naïve association)
c TSLS has the same result using set F or set R
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