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Abstract

Background: Mixed models are a useful tool for evaluating the association between an outcome variable and
genetic variables from a family-based genetic study, taking into account the kinship coefficients. When there are
ultrahigh dimensional genetic variables (ie, p≫ n), it is challenging to fit any mixed effect model.

Methods: We propose a two-stage strategy, screening genetic variables in the first stage and then fitting the
mixed effect model in the second stage to those variables that survive the screening. For the screening stage, we
can use the sure independence screening (SIS) procedure, which fits the mixed effect model to one genetic
variable at a time. Because the SIS procedure may fail to identify those marginally unimportant but jointly
important genetic variables, we propose a joint screening (JS) procedure that screens all the genetic variables
simultaneously. We evaluate the performance of the proposed JS procedure via a simulation study and an
application to the GAW20 data.

Results: We perform the proposed JS procedure on the GAW20 representative simulated data set (n = 680
participant(s) and p = 463,995 CpG cytosine-phosphate-guanine [CpG] sites) and select the top d = ⌊n/ log(n)⌋
variables. Then we fit the mixed model using these top variables. Under significance level, 5%, 43 CpG sites are
found to be significant. Some diagnostic analyses based on the residuals show the fitted mixed model is
appropriate.

Conclusions: Although the GAW20 data set is ultrahigh dimensional and family-based having within group
variances, we were successful in performing subset selection using a two-step strategy that is computationally
simple and easy to understand.

Background
Compared with genome-wide DNA sequence variance
investigation of blood lipids, genome-wide epigenetic in-
vestigation has been far less explored. To fill this gap,
the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study conducted an epigenome-wide associ-
ation study to uncover epigenetic factors influencing
lipid metabolism [1].
GAW20 provides a unique opportunity for us to

analyze the real data from the GOLDN study, as well as
the simulated data based upon it. Along with the

opportunity come the challenges. First, the number of
genetic variables is ultrahigh. The GAW20 data consists
of cytosine-phosphate-guanine dinucleotide (CpG) vari-
ables, whose sizes are much larger than the number of
subjects. Second, the subjects are not independent; in-
stead, the subjects are correlated within families. Third,
there are repeated measurements of the methylation and
triglyceride (TG) levels. The pregenomethate values are
measured at visits 1 and 2, and the postgenomethate
values are measured at visits 3 and 4.
Irvin et al. [2] used mixed models to analyze the

GOLDN data, using a random effect for family structure.
Specifically, at each CpG site, they fitted a mixed effect
model to examine its effect on the log of fasting TG
level, adjusting for some fixed effects such as age and
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gender. Based on these marginal effects, four CpG sites
in intron 1 of CPT1A were very strongly associated with
TG. Actually, this marginal screening procedure is called
sure independence screening (SIS) [3]. However, the SIS
procedure may fail to identify marginally unimportant
but jointly important genetic variables. Therefore, in this
article, we propose a joint screening (JS) procedure that
performs screening on all the genetic variables
simultaneously.
We apply the proposed JS procedure to the represen-

tative simulated data set provided by GAW20. This data
set is made up of the 200 simulated data sets generated
by GAW20 based on the GOLDN study data [2], simu-
lating what might happen if we were to repeat the
GOLDN clinical trial, but using a new fictitious drug,
called “genomethate,” that has a pharmacoepigenetic ef-
fect on the TG level.
In the representative data set, there were 717 partici-

pants in pedigrees; participants already on any
lipid-lowering medication were taken off drug for a
“washout period.” At visit 1 (after the washout), partici-
pants were measured after an overnight fast with a
standard lipid profile. The next day, they returned to the
clinic, again fasting, for a second, repeat lipid profile. All
participants were then given the genomethate drug for a
3-week treatment period, after which they returned to
the clinic for 2 consecutive days of lipid profiling (visits
3 and 4, both with overnight fasting), to assess the re-
sponse to treatment. We considered the difference in

the TG level (the original scale or the log scale) between
visit 4 and visit 2 as the outcome variable. There were
680 participants with the observed outcome.

Methods
Mixed models for family data
Mixed model analysis provides a general, flexible ap-
proach when dealing with correlated data [4]. Mixed
models allow a wide variety of variance-covariance
structures to be explicitly modeled. Therefore, mixed
models are a useful tool to analyze the GAW20 data, be-
cause participants within the same family are correlated
with each other via genetic structure. Figure 1 shows
side-by-side boxplots of the outcome variable (the differ-
ence in TG level between visit 4 and visit 2) within 13
pedigrees, demonstrating the heterogeneity of the out-
come variable.
Suppose that there are n subjects participants from a

family study and there are p genetic variables. Assume
that we can relate the phenotypes with the genetic vari-
ables via the following mixed model,

Y ¼ Xβþ αþ ε ð1Þ

where Y is an n × 1 vector of observed phenotypes, X is
an n × p design matrix of genetic variables, β is a p × 1
vector representing the fixed effects of genetic variables,
and α = (α1,⋯, αn)

′ is an n × 1 vector representing the

Fig. 1 Boxplots of TG level by Pedigree number. The boxplots demonstrate that the response values vary between and within pedigrees
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random effects. We assume that ε has zero-mean and
Varð ε Þ ¼ σ2e In, and

α � N 0; σ2gK
� �

where n × n matrix K = (kij)n × n is the kinship matrix
among the n participants from the family data. The kin-
ship coefficent kij is a measure of genetic relatedness be-
tween two individuals i and j.
If p were small compared with n, we would estimate

the unknown parameters, β; σ2e and σ2
g , in the above

mixed model and then identify those genetic variables
that are significantly associated with the phenotype; that
is, to identify those CpG sites that are associated with
the TG level.
Specifically, if p were small compared with n, we could

estimate the coefficient vector β and the covariance
matrix Y ,

V ¼ Var Yð Þ ¼ σ2gK þ σ2e In ð2Þ
via the weighted least-squares,

β̂WLS ¼ X 0V̂
−1
X

� �−1
X 0V̂

−1
Y ð3Þ

and the restricted maximum likelihood (REML),

V̂ ¼ argmax lp Vð Þ− logjX 0V −1Xj� � ð4Þ
where lpðV Þ ¼ −f logjV j þ ðY−X β̂Þ0V −1ðY−Xβ̂Þg:

Curse of dimensionality
However, when the dimension of the genetic variables is
ultrahigh (p≫ n), as in the GAW20 data, we cannot use
the above estimates (3) and (4) for β and V, respectively.
This is an example of curse of dimensionality; the matrix

under inverse in equation (3), X 0V̂
−1
X , is a p × p matrix,

but its rank is at most n. There are two reasons the clas-

sical mixed model is not working. First, the matrix X 0

V̂
−1
X is not invertible, so the solution to equation (3) is

not unique. Second, when p is ultrahigh, the computa-

tion of general inverse of X 0V̂
−1
X is very hard, not to

mention the estimation of V in equation (4).
If the dimensional of genetic variable is high (p~n or

p > n), we can use some regularization methods. These
methods simultaneously estimate parameters and per-
form variable selection by penalizing a loss function with
the help of a sparsity inducing penalty. For examples,
see Tibshirani (LASSO [least absolute shrinkage and se-
lection operator]) [5]; Hoerl and Kennard (Ridge regres-
sion) [6];Fan and Li (SCAD) [smoothly clipped absolute
deviation] [7]; Zou and Hastie (elastic net) [8]; and
Schelldorfer et al. [9]. However, in ultrahigh dimensional
cases, the computation cost for these regularization

methods becomes a concern.Therefore, for the situation
with ultrahigh dimensional genetic variables, we propose
a two-stage approach.
In the first stage, we conduct screening to identify a

subset of genetic variables that are suspected to be asso-
ciated with the outcome; choosing the subset size such
that it is manageable by mixed models. In the second
stage, we conduct mixed model analysis using those gen-
etic variables that survive the screening stage. In the fol-
lowing two subsections, we describe these two stages in
detail.

Stage 1: A novel JS procedure
Our JS procedure for mixed models is motivated by the
JS procedure for linear models proposed by Wang and
Leng [10]. The JS procedure proposed by Wang and
Leng [10] is called high-dimensional ordinary
least-squares projection (HOLP) and is for the following
linear model,

~Y ¼ ~Xβþ ~ε ð5Þ

where ~Y is an n × 1 vector of observed phenotypes, ~X is
an n × p design matrix of genetic variables, and β is a
p × 1 vector representing the fixed effects of genetic vari-
ables. We assume that ~εhas zero-mean and Varð~εÞ ¼ σ2

e

In . Note that the participants are independent under lin-
ear model (5), while the participants are correlated via
the kinship coefficient matrix under mixed model (1).
We first describe the HOLP procedure for the linear

model. Under linear model (5), if dimension p were
small compared with sample size n, we could consider
the following least-squares (LS) estimate,

~βLS ¼ ~X
0 ~X

� �−1
~X
0 ~Y ð6Þ

But for the setting where p≫ n, the LS estimate is not
applicable owing to the aforementioned curse of dimen-
sionality. To overcome this problem, the HOLP proced-
ure [10] simply rearranges the positions of design matrix
~X in equation (6) and uses the following estimate:

~βJS ¼ ~X
0 ~X ~X

0� �−1
~Y ð7Þ

Equations (6) and (7) are commonly known as “dual
equations”; see, for example, Shawe-Taylor and Cristia-
nini [11]. Equation (7) not only solves the problem that
the solution to equation (6) is not unique when the di-
mensional of variables is high, but also, more import-
antly, provides some ranking for those variables. That is,

based on ~βJS , we can conduct JS, using the following
subset of variables for the second stage analysis:
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~Md ¼ j : ~β j

��� ���is among the top d ofall j~β jj
n o

ð8Þ

To derive the sure screening consistency of the pro-
posed JS procedure for linear models, Wang and Leng
[10] assumed that the true coefficient vector β in equa-
tion (5) is sparse; that is, many of the components of β are
exactly equal to zero. Let M� ¼ f j : β j≠0g , where β is

the true coefficient vector in equation (5). Wang and
Leng showed that, under some standard conditions on
the design matrix ~X and some weak condition on d,Prob
ðM�⊆MedÞ→1 as n→∞ and p diverges with n. Further-

more, under some condition on d,Prob ð ~Md ¼ M�Þ→1
as n→∞ and p diverges with n.
Now we are ready to describe our JS procedure for

mixed models. Assume for the moment that the covari-
ance matrix V given by equation (2) is known. Under the
transformation ~Y ¼ V −1=2Y ; mixed model (1) becomes

~Y ¼ V −1=2Xβþ V −1=2 αþ εð Þ ¼ ~Xβþ ~ε

which is equivalent to linear model (5). Therefore, moti-
vated by the idea of HOLP in equation (7), we propose
the JS estimate for a mixed model as ~βJS ¼ ~X

0ð~X ~X
0Þ−1 ~Y ,

where ~Y ¼ V −1=2Y ;and ~X ¼ V −1=2X . Now, if we plug in
the transformations into the above equation, we have

~βJS ¼ X 0V −1=2 V −1=2XX 0V −1=2
� �−1

V −1=2Y

¼ X 0V −1=2V 1=2 XX 0ð Þ−1V 1=2V −1=2Y

¼ X 0 XX 0ð Þ−1Y
Therefore, under mixed model (1), the JS estimate is

β̂JS ¼ X 0 XX 0ð Þ−1Y ð9Þ
For the rest of the article we denote the JS estimate for

the mixed model (1) by β̂JSto differentiate it from the lin-
ear model estimategiven by equation (7). It is important
to note that the JS screening estimate (9) does not de-
pend on unknown matrix V. Thus, we avoid the compu-
tationally difficult problem of estimating V via the
REML (4). Because the matrix under inverse in equation
(9), XX′, is an n × n matrix, the computation of equation
(9) is computationally fast for the settings where p≫ n.
The estimate for equation (9) has a computational com-
plexity of Oðn2pÞ.
Based on β̂JS , we can conduct JS for mixed model (1);

that is, consider subset

M̂d ¼
n
j :

���β̂ j

���is among the top d of all
���β̂ j

���o ð10Þ

and use it for the second stage analysis. We assume that
the true coefficient vector β is sparse. Let M� ¼ f j : β j≠

0g, where β is the true coefficient vector in equation (1).
By similar arguments in Wang and Leng [10], we can
derive the sure screening consistency of the proposed JS
procedure for mixed models, under those conditions in
Wang and Leng [10] plus an extra condition that there
exists τ ≥ 0 and c > 0 such that λmax(V)/λmin(V) ≤ cnτ,
where λmax(V) and λmin(V) are the maximum and mini-
mum eigenvalues of V. That is, under some standard
conditions on the design matrix X and some weak con-

dition on d,Prob ðM�⊆M̂dÞ→1 as n→∞ and p diverges

with n. Furthermore, under some condition on d,Prob ð
M̂d ¼ M�Þ→1 as n→∞ and p diverges with n.

Determination of d
The determination of d is an important issue. Here we
describe two common approaches. One approach is that
we use a conservatively large d initially, say d = n. Then,
based on the top d genetic variables, we apply some pe-
nalized mixed model, say the l1-penalized mixed model
[9] along with 10-fold cross-validation, to select a par-
ticipant of d′ genetic variables, where d′ < d. Another ap-
proach is that we simply use d = ⌊n/ log(n)⌋. This
approach was first considered by Fan and Lv [3], where
they proposed the SIS procedure. In this article, because
we propose a two-stage strategy to analyze the GAW20
data, we consider the second approach to determine the
value of d; that is, d = ⌊n/ log(n)⌋.

A simulation study
We conduct a simulation study to demonstrate that the
proposed JS procedure for mixed models is robust to the
familial effects. Consider the following model:

yij ¼ αi þ x0ijβþ εij; i ¼ 1;⋯; 100; j ¼ 1;⋯; 5

The values of the parameters are taken to be:

p; nð Þ ¼ 100000; 500ð Þ;

(i). There are 100 families; each has 5 participants;

αi � N 0; σ2
� �

; xij � MVN 0; Inð Þ;
β ¼ 5:2;−4:5; 0:9; 2:1;−3:8; 0;⋯; 0ð Þ;

σ2 ¼ 0; 0:1; 0:2; 0:5; 1; 2; 5f g:

We examined the properties of β̂JS in equation (9) for
different values of σ2. For the JS screening estimate of
equation (9) to be robust, the percent of times the non-
zero β appears in the largest d ( = ⌊n/ log(n)⌋ = ⌊500/

log(500)⌋ = 80) β̂JS should not vary much. In fact, the
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percent of nonzero β hovers around 84% for the chosen
σ2.
This shows us that the proposed estimator (9) is in-

sensitive toward the covariance structure of the random
effects. Having discovered this important property of the
HOLP estimator, we proceed to apply it to the
GAW20 data set.

Stage 2: Analysis on the selected d variables
The JS stage selects d genetic variables. An advantage of
our JS procedure over the existing marginal screening is
that the selected d genetic variables are expected to be
highly associated with the outcome variable. Now in the
second stage, we can apply mixed models to analyze the
associations between these selected genetic variables and
the outcome variable. Because we have reduced the
number of variables to be within a manageable range,
say d < n, it is straightforward to implement mixed
model analysis using existing statistical software such as
R and SAS.
Specifically, we consider mixed model (1), where there

is one individual random effect for each participant; that
is, αi for participant i. The correlations among αi are
quantified using the kinship coefficient matrix K. The
kinship coefficient matrix can be computed easily by
knowing the father ID and mother ID for each partici-
pant. Actually, participants are only correlated within
each pedigree, and participants from different pedigrees
are uncorrelated. Therefore, K is a diagonal blockmatrix,

and the implementation of mixed model analysis is com-
putationally fast.
In this stage, we can conduct statistical inferences using

the results from the mixed model analysis. We can examine
the effect size of each genetic variable. We can also test the
statistical significance for each genetic variable. Because
there are d genetic variables under the consideration, we
should consider multiple-comparison correction when we
explain the statistical testing results. For example, we can
consider the false discovery rate control. We can also con-
sider the Bonferroni correction, using α = 0.05/d as the sig-
nificance level to claim significance findings.
The numerical results were obtained using software

SAS 9.4. We used SAS procedure PROC IML for Matrix
calculations and PROC INBREED to compute the kin-
ship matrix K. We conducted mixed model analysis
using PROC MIXED.

Results
Computational cost
The sample size is n = 680, as only 680 out of 717 sub-
jects participants have TG-level data at visit 4. At the
screening stage, to screen p = 463,995 CpG sites, the

computation of the JS estimate, β̂JS , took approxi-
mately 12 minutes on an Intel® Core™ i7-7500 U
2.70GHz, 2901 Mhz Processor. At the second stage, the
computation time to apply PROC MIXED on d = ⌊680/
log(680)⌋ = 104 variables is ignorable.

Fig. 2 Screening results. The plot shows the β̂JS estimates from the JS procedure under equation (11)
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Results from stage 1
We perform the proposed JS procedure to identify sig-
nificant CpG sites. We consider the difference in the TG
level between visit 4 and visit 2 as the outcome variable.
Accordingly, we also consider the differences in the CpG
sites between visit 4 and visit 2 as the predictors, as both
the TG level and the CpG value change as time goes by.
That is, we consider

Y ¼ TGL4−TGL2;
X j ¼ CpG4−CpG2; j ¼ 1;⋯; p:

ð11Þ

We compute the JS estimate (9), using the GAW20
representative simulated data set with n = 680 observa-
tions and p = 463,995 CpG sites. We specify d = ⌊680/
log(680)⌋ = 104 and we obtain the select subset (8). We
observe from Fig. 2 that among the truly significant
CpGs used in generating the simulated data,
cg00001261, cg00045910, cg12598270, cg00000363,
cg00703276, and cg11736230 passed the screening.

Results from stage 2
We perform mixed model analysis (1), using the
GAW20 representative simulated data set with n = 680
observations and d = 104 selected genetic variables plus
other important risk factors, namely, age, gender, smok-
ing, and metabolic syndrome.
First we conduct residual diagnostics using conditional

Pearson residuals to check the goodness of fit of the
above mixed model using CpG sites as variables. We ob-
served that the residuals approximately follow normal
distribution, which indicates the model is appropriate.
Residual plots have been omitted because of space
restrictions.
Table 1 shows the mixed model results from the sec-

ond stage. However, as can be observed from the table,
none of the CpG sites used for simulating the data be-
came significant at the 5% level.

Discussion
Mixed models are a useful tool for analyzing family data.
But when the dimension of the genetic variables is ultra-
high, it is computationally difficult to fit mixed models,
and the results from any fitted mixed model will be un-
stable. To overcome this problem, we can consider a
two-stage strategy; in the first stage we perform variable
screening and in the second stage we conduct regular
mixed model analysis on a manageable number of vari-
ables that pass the screening.
In this article, we propose a novel JS procedure for

the first stage. It is novel because the existing screen-
ing procedures are marginal, like the one used by
Irvin et al. [2].

Table 1 Solutions for fixed effects for CpG sites
Effect Chr# (BP) Estimate p-Value

Intercept – −26.27 < 0.0001

ATP meta syna – − 34.32 < 0.0001

cg01606628 6(3063768) − 175.41 0.0003

cg01929239 2(114346218) − 184.82 0.0002

cg01965874 1(19052204) −65.82 0.0175

cg02317738 5(7847407) − 137.66 0.0093

cg02586268 1(173883567) − 242.13 <.0001

cg02985292 16(687604) 191.16 <.0001

cg04404270 1(151508741) − 106.60 0.0007

cg05653055 17(20841843) −90.22 0.0005

cg06653026 7(84892267) 76.05 0.0162

cg07741992 8(95303464) 137.41 0.0031

cg07748719 16(1272498) − 119.45 0.0109

cg08711796 22(16287910) 185.82 0.0001

cg11016563 11(101454626) 148.60 0.0016

cg11725972 7(155191845) −162.89 0.0003

cg14518098 9(135085065) 152.69 <.0001

cg14553506 3(183957794) 25.57 0.0116

cg14710552 7(134832584) 99.04 0.0109

cg15155441 11(57005981) 149.42 0.0003

cg15399174 15(28349794) − 187.49 0.0005

cg15469014 19(11032172) 204.24 0.0037

cg16776885 12(132834399) 44.93 0.0059

cg16893574 16(71392095) 153.00 0.0015

cg17661462 19(7741838) −177.99 0.0002

cg18320647 14(61201977) 101.74 0.0056

cg18473686 22(33427086) 119.85 0.0072

cg19057882 20(37101373) 99.74 0.047

cg19191624 2(32582276) −154.06 0.0014

cg19425116 19(57804150) −63.71 0.0327

cg20929733 1(1572082) −105.13 0.0031

cg20933109 14(36991034) 126.93 0.0102

cg21397592 8(23167206) 176.20 0.0009

cg22171993 5(81818816) 133.09 0.0045

cg22610434 1(158259914) −40.34 0.0371

cg22848704 1(48648439) 200.79 0.0001

cg23774356 22(19137874) −105.17 0.0114

cg23968558 17(17583879) −162.86 0.0007

cg24332389 1(6558085) 160.98 < 0.0001

cg24805360 5(77930038) 85.76 0.0021

cg24973221 10(134407873) −83.08 < 0.0001

cg25371129 6(31599646) 131.33 0.0031

cg25826973 6(31865892) − 111.47 0.0085

cg26685197 1(10003173) − 198.32 0.0004

cg27087233 6(138860932) −146.65 0.0003
ametabolic syndrome defined by ATP
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While marginal screening procedures fit a mixed
model for one genetic variable at a time, the proposed JS
procedure considers all the genetic variables simultan-
eously. As high-dimensional data tend to have correlated
predictors, marginal screening procedures may select
unimportant variables that have a high degree of associ-
ation to important predictors. Likewise, these procedures
may fail to select truly important variables that are
jointly correlated but have no marginal association to
the response. The proposed JS procedure is efficient at
detecting both marginally and jointly significant
variables.
We performed screening using the outcome variables

as defined by equation (11) and selected a subset of 104
genetic variables. As the TG-level values are skewed, it is
advisable to do a log-transformation so that normality
assumption is not violated. In contrast, the JS screening
procedure performs well under nonnormality of the out-
come variable. Also, it makes sense to consider the dif-
ference in CpG values, if we are using them for the
outcome variable. We have shown that screening using
equation (11) performs well, as 6 out of the 10 truly sig-
nificant variables pass the screening.

Conclusions
We consider a two-stage strategy for fitting mixed
models to family data with ultrahigh dimensional vari-
ables. We propose a novel JS procedure to identify a
manageable subset of variables. The proposed procedure
is computationally efficient and enjoys the desirable sure
screening consistency. Application to the GAW20 data
shows that the proposed JS procedure performs well.
However, the proposed two-stage strategy considers

screening and testing on the same data, and the users
should be cautioned that it may inflate the family-wise
error [12]. If the data set is large, we could divide the
data into two halves, one for screening and one for test-
ing. The impact of this two-stage strategy on the
family-wise error is not investigated here and would be
investigated in future work.
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