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Abstract

The main goal of this paper is to estimate the effect of triglyceride levels on methylation of cytosine-phosphate-
guanine (CpG) sites in multiple-case families. These families are selected because they have 2 or more cases of
metabolic syndrome (primary phenotype). The methylations at the CpG sites are the secondary phenotypes.
Ascertainment corrections are needed when there is an association between the primary and secondary
phenotype. We will apply the newly developed secondary phenotype analysis for multiple-case family studies to
identify CpG sites where methylations are influenced by triglyceride levels. Our second goal is to compare the
performance of the naïve approach, which ignores the sampling of the families, SOLAR (Sequential Oligogenic
Linkage Analysis Routines), which adjusts for ascertainment via probands, and the secondary phenotype approach.
The analysis of possible CpG sites associated with triglyceride levels shows results consistent with the literature
when using the secondary phenotype approach. Overall, the secondary phenotype approach performed well, but
the comparison of the different approaches does not show significant differences between them. However, for
genome-wide applications, we recommend using the secondary phenotype approach when there is an association
between primary and secondary phenotypes, and to use the naïve approach otherwise.

Background
The multiple-case family design oversamples families
with cases of metabolic syndrome (primary phenotype).
To obtain unbiased estimates of the model parameters,
adjustments for this oversampling are required. Some
work has been done when the primary phenotype is
modeled [1]. However, it is often overlooked that ascer-
tainment corrections are also needed when a secondary
phenotype is modeled and the primary and secondary
phenotype are correlated. A combination of the retro-
spective likelihood and a joint model for the primary
and secondary phenotypes appears to provide unbiased
estimates of the model parameters [2, 3]. Unfortunately
for family-based data sets, the within-family correlation
also must be modeled, which yields integration over a

multivariate distribution of a dimension of twice the size
of the family. As a consequence of computations of
high-dimensional integrals in large pedigrees, model fit-
ting becomes time-consuming and applications in
genome-wide settings are almost infeasible.
Our main goal is to investigate the total effect of triglycer-

ide (TG) levels before treatment on methylation after treat-
ment in families with coronary heart disease (CHD). We do
not have information on CHD, but we have information on
metabolic syndrome (MetS), which is known to influence
CHD [4]. Note that TG level is associated with MetS be-
cause of 1 diagnosis criteria of MetS (fasting blood TG
level ≥ 150 mg/dL) [5]. Fig. 1 shows the relationship be-
tween the variables of interest in a directed acyclic graph
[2, 6]. In this directed acyclic graph, the effect of TGs on
methylation of a cytosine-phosphate-guanine (CpG) site
might be either direct or via the mediators MetS and TG at
follow-up. To assess the total effect of TG level at baseline
on methylation after treatment, we assume that there are
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no confounders for the relationship between TG level at
baseline and methylation after treatment. The variable S
represents the ascertainment process. We assume that S is
solely based on CHD. We assume that there are no con-
founders for the relationship between CHD and MetS and
that the TG level has no direct effect at baseline on CHD.
Our second goal is to compare the performance of vari-

ous methods for ascertainment correction in the
multiple-case family design. Although the secondary
phenotype approach provides unbiased estimates, compu-
tations are time-consuming. A second often used method
is available in SOLAR (Sequential Oligogenic Linkage
Analysis Routines) [7]. This method provides valid esti-
mates for secondary phenotype analysis in the proband
family design, where family members of probands (typic-
ally cases, but controls also might be considered) are re-
cruited. Ascertainment correction for this design involves
conditioning the likelihood function on the outcome of
the proband. Computations are fast and analyses at
genome-wide scale are hence feasible. We investigate
whether we can apply this method to the multiple-case
families of GAW20 by assigning the proband status to in-
dividuals. Finally, we consider the naïve approach, which
does not take the family design into account.

Methods
Study sample
We analyze the family data from the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study [8].
We restrict ourselves to 530 participants who have a
complete measurement of TG levels for time points 1
and 2 and of methylation at CpG sites for time point 4
(after treatment). We have data on more than 450,000
CpG sites covering all autosomal chromosomes. The
families of the GOLDN study are a subsample of the
Family Heart Study of two centers: Minneapolis, MN,
and Salt Lake City, UT. In the Family Heart Study, fam-
ilies with at least 2 CHD cases and a family risk score of
0.5 or higher were eligible [9]. Because we do not have
information about CHD cases in the families, we used
the related outcome, MetS, as the primary phenotype.

Secondary phenotype approach
To assess the effect of TG level on methylation at a CpG
site (secondary phenotype), we used the newly developed
secondary phenotype approach [3], which fits a joint model
to the secondary phenotype (methylation) and the primary
phenotype (MetS). The retrospective likelihood that condi-
tions on MetS is used. If the ascertainment S only depends
on the primary phenotype MetS, this method corrects for
the ascertainment [3]. The retrospective likelihood for
modeling the effect of TG on methylation is:

P MjTG;MSð Þ ¼ P MS;Mð jTGÞ P TGð Þ
P MSjTGð ÞP TGð Þ ¼ P MS;Mð jTGÞ

P MSjTGð Þ
ð1Þ

where MS = MetS and M = methylation. For the numer-
ator, we use a probit link to model the conditional joint
distribution of the binary variable MS and the continu-
ous variable M in families given TG. Let MS′ be the nor-
mally distributed latent variable for MS, that is, the
liability score. The conditional joint density P(MS = 1,
M =m| TG) can be obtained from the joint distribu-
tion P(MS′, M| TG) from the following formula:

P MS ¼ 1;M ¼ mjTGð Þ ¼
Z∞

0

P ms0;M ¼ mjTGð Þdms0

where m and ms′ are the realization of M and MS′, re-
spectively. Furthermore, P(MS = 0, M =m| TG) = 1 −
P(MS = 1, M =m| TG).For the distribution of MS′ and
M given TG we use a multivariate Gaussian distribution
with means μMS′ + βMS′TG and μM + βMTG, respectively,

and variance–covariance matrix Σ ¼ ΣMS0 ΣM MS0
ΣMS0M ΣM

� �

; where the covariance structures are modeled with nor-
mally distributed zero mean random effects as follows:
ΣMS′ = var (gMS′ + u + ϵMS), ΣM = var (gM + u + ϵM);that
is, the covariance of MS and M within the family, and
ΣM MS0 ¼ covðgM þ uþ ϵM; gMS0 þ uþ ϵMS0Þ the covari-
ance of the random effects modeling the correlation be-
tween the two outcomes within the family. Here gMS′ gM
are the genetic random effects with correlation structure

Fig. 1 Directed acyclic graph illustrating the existing association between each node
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given by the kinship coefficient; ϵM is the residual; and u
is the shared random effects between primary and sec-
ondary phenotype. For identifiability reasons of the vari-
ance parameters of MS′, ϵMS′ is fixed to 1. Finally, the
denominator in eq. (1), P(MS| TG), can be obtained by
integrating P(MS,M| TG) over the distribution of M. See
Tissier et al. [3] for details.

Naïve approach
For each CpG site, a linear mixed-effect model is used
to assess the effect of TG level on methylation. The cor-
relation within the families is modeled by polygenic ef-
fects gM. The lmekin function from package coxme in R
is used to fit these models. This approach provides un-
biased results when there is no association between the
primary and secondary phenotype.

Adjusting for selection based on proband
A second approach is to assign a proband status to some
of the family members and to use methods for the pro-
band family design for data analysis. We considered 2 sets
of probands, namely a proband status which is equivalent
to having MetS (SOLAR [MetS]) and to being the oldest
member of the family (SOLAR [OLD]). Proband status
based on MetS was chosen, because families were selected
based on CHD and MetS is associated with CHD [10].
Using the oldest member of a family as proband is moti-
vated by fact that recruitment of the families was con-
ducted decades ago. The CHD cases that satisfy the
selection criteria are likely to be deceased and the oldest
family member might be the link between these CHD
cases and the current family members. We used the func-
tion polygenic as implemented in SOLAR (Texas Biomed-
ical Research Institute, San Antonio, TX) [7].
Corrections for ascertainment were made by condition-

ing the likelihood for each pedigree on the trait values of
the pedigree probands [11]. Let IP be the indicator for the
proband in the family, which represents the outcomes of
the proband (ie, MP and TGP), i the index of the family,
MF

i and TGF
i the vectors of the outcomes for the whole

family, and S the ascertainment process. For a family i, the
likelihood used by SOLAR can be written as:

P MF
i

� ��TGF
i ; SiÞ ¼

P MF
i

� ��TGF
i Þ

P MP
i

� ��TGP
i Þ

The SOLAR approach is based on 2 assumptions. The
first assumption is that the ascertainment is solely based
on the outcomes of the probands:

P MF
i

� ��TGF
i ; SiÞ ¼ P MF

i

� ��TGF
i ; I

PÞ ¼ P MF
i

� ��TGF
i ;TG

P
i ;M

P
i Þ

By use of the Bayes rule we obtain:

P MF
i

� ��TGF
i ;TG

P
i ;M

P
i Þ ¼

P MF
i ;M

P
i ;TG

F
i ;TG

P
i

� �
P MP

i ;TG
F
i ;TG

P
i

� �

¼ P MF
i ;M

P
i

� ��TGF
i ;TG

P
i Þ

P MP
i

� ��TGF
i ;TG

P
i Þ

The second assumption made is that the outcome of the
proband does not depend on the covariate values of the
family members given its own covariate value. Therefore,
PðMP

i jTGF
i ;TG

P
i Þ ¼ PðMP

i jTGP
i Þ. Finally, as MP

i ⊂M
F
i and

TGP
i ⊂TG

F
i ; the numerator becomes PðMF

i jTGF
i Þ.

The log-likelihood maximized by SOLAR is then:

L ¼
X
i

ln P MF
i

� ��TGF
i

� �Þ− ln P MP
i jTGP

i

� �� �

A family-wise error rate of 0.05 is used throughout this
article and we apply a Bonferroni correction to obtain
the per-test p value.

Strategy
Because it is not feasible to apply the secondary pheno-
type approach to all CpG sites, we use a 2-step approach
to estimate the effect of TG level on methylation. First,
we test for each CpG site whether the primary pheno-
type MetS has an effect on methylation using a linear
mixed model to take into account the existing correl-
ation among family members. For this analysis, there is
no need to adjust for ascertainment, as we assume that
ascertainment is via MetS. From these analyses, we iden-
tify the group of CpG sites that are significantly influ-
enced by MetS (p < 1.1e-7). Second, we estimate the
effect of TG level on methylation for each CpG site. For
the group of CpG sites with methylation significantly
influenced by MetS, we apply the secondary phenotype
approach. For the remaining CpG sites, we apply the
naïve approach.
To study the performance of SOLAR(MetS), SOLAR(-

OLD), the secondary phenotype, and naïve approaches,
we apply these approaches to a set of 1000 randomly se-
lected CpG sites for which MetS has no influence on
methylation (test specific p>0.8). We computed the aver-
age over the 1000 CpG sites of the square differences be-
tween the estimates of the effect of TG level on
methylation obtained by the approaches used to adjust
for ascertainment and the naïve approach:

avgdiff ¼
P

β1−β2ð Þ2
1000

β1 and β2 are the estimates of the effect of TG level on
methylation from either secondary phenotype or SOLAR
and naïve approaches, respectively. The estimates of the
parameters represent the increase in methylation per
unit of TG in dL/mg. We apply the delta method, where
we use the estimated correlation between the parameters
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over all CpG sites, to obtain the standard errors. Finally,
we assess the performance of the Wald statistics corre-
sponding to parameter estimates of the 4 approaches in
the 1000 randomly selected CpG sites for which MetS
has no influence on methylation by a quantile–quantile
(Q-Q) plot of the p values.

Results
We applied the 2-step approach to 463,995 CpG sites lo-
cated at the autosomal chromosomes. After the first step
of the analysis, 3842 CpG sites appear to be significantly
influenced by MetS (p < 1.1e-7). For these CpG sites, the
secondary phenotype approach was used to assess the
effect of TG level on methylation. Methylation at the
remaining CpG sites were analyzed using the naïve ap-
proach. Table 1 shows the results. The secondary pheno-
type approach identified 294 CpG sites as associated
with TG level in the group of CpG sites previously found
to be associated with MetS. One of the identified CpG
sites is cg00574958, which has a p value of 6.7e-10. This
CpG site was identified as being associated with TG level
by Irvin et al. [8].
Regarding the comparison of the different ascertainment

correction approaches, Table 2 shows the average of the
square differences between the estimates of the parame-
ters representing the effect of TG level on methylation ob-
tained from the approach that attempts to adjust for
ascertainment and the naïve approach. For the group of
CpG sites associated with MetS, the average of the square
difference to naïve approach is 0.120 for secondary pheno-
type, 0.223 for SOLAR(MetS), and 0.006 for SOLAR(-
OLD). The average square difference in the group of CpG

sites that are not associated with MetS using the naïve ap-
proach was not significantly different from 0 except for
SOLAR(OLD). Finally, Fig. 2 shows the Q-Q plots of the
p values of the Wald tests for the 1000 randomly selected
not associated CpG sites for the 4 approaches. The sec-
ondary phenotype approach and the naïve approach are a
slightly conservative whereas SOLAR(MetS) is too liberal.
SOLAR(OLD) is quite conservative.

Discussion and conclusions
We studied the performance of the secondary phenotype
approach and SOLAR with 2 proband definitions. When
there is no association between the primary and the sec-
ondary phenotype, the naïve and the secondary pheno-
type approach provide similar results [3]. In contrast,
the estimated association effects from SOLAR(MetS)
and SOLAR(OLD) in this group are not similar to the
ones obtained by the naïve approach. The Q-Q plots
show that the secondary and the naïve approach perform
similarly and are a slightly conservative in terms of dis-
tribution of the test statistic under the null hypothesis.
SOLAR appears to be either conservative or too liberal
for these data. The method of SOLAR conditions on the
proband outcome, which might not provide valid
estimators if the outcome of the proband is a collider.
Furthermore, SOLAR assumes that the outcome of the
proband does not depend on the covariate values of the
family members given its own covariate value, which
might not be correct in the presence of unobserved
confounders. Moreover, for the selection scheme used in
this study, the secondary phenotype approach is most
appropriate. However, in contrast to the secondary
phenotype approach, SOLAR can be applied in
genome-wide settings.
The directed acyclic graph clarifies the assumptions that

are made in our analysis. The assumptions that TG level
has no direct effect on CHD and that there are no unob-
served confounders for MetS and CHD might not be
valid. Indeed, Holmes et al. [12] showed a causal effect of
TG level on CHD using Mendelian randomization. How-
ever, these authors do not consider MetS; consequently,
MetS might be in the path between TG level and CHD
and our model cannot be excluded. Moreover, Mendelian
randomization also makes many assumptions [13]. Fur-
thermore, our result that the secondary phenotype ap-
proach gives estimates similar to those given by the naïve
approach when there is no relationship between primary
(MetS) and secondary (methylation) suggests that our di-
rected acyclic graph is appropriate.
Because the secondary phenotype approach is known

to be robust, we advocate using the secondary pheno-
type approach for CpG sites that are significantly associ-
ated with the primary outcome, MetS.

Table 1 The number of significant CpG sites using the 2-step
approach with MetS as the primary phenotype

CpG sites (n = 463,995) Approaches Number associated
with TG level

Associated with
MetS (3842)

Secondary
phenotype

294 (7.6%)

Not associated with
MetS (460,153)

Naïve 0

Table 2 Average of the square of the differences between the
effect estimates between 2 approaches (in brackets are the 95%
confidence intervals)

Group of CpG
with methylation

Naïve and
secondary
phenotype

Naïve and
SOLAR(MetS)

Naïve and
SOLAR(OLD)

Associated
with MetS

0.120
[−0.115, 0.355]

0.223
[−0.208, 0.654]

0.006
[−0.001, 0.013]

Not associated
with MetS

0.001
[−0.002, 0.004]

0.050
[−0.016, 0.116]

0.007
[0.005, 0.008]
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