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Abstract

DNA methylation plays an important role in normal human development and disease. In epigenome-wide association
studies (EWAS), a univariate test for association between a phenotype and each cytosine-phosphate-guanine (CpG) site
has been widely used. Given the number of CpG sites tested in EWAS, a stringent significance cutoff is required to
adjust for multiple testing; in addition, multiple nearby CpG sites may be associated with the phenotype, which is
ignored by a univariate test. These two factors may contribute to the power loss of a univariate test. As an alternative,
we propose applying an adaptive gene-based test that is powerful in genome-wide association studies (GWAS), called
aSPUw, to EWAS for simultaneous testing on multiple CpG sites within or near a gene. We show its application to the
GAW20 methylation data set.
Background
DNA methylation of cytosine residues at cytosine-pho-
sphate-guanine (CpG) dinucleotides is of particular
interest because it has a central role in the normal hu-
man development and disease [1]. Epigenome-wide as-
sociation studies (EWAS), analogous to genome-wide
association studies (GWAS), are becoming increasingly
popular to interrogate methylation changes associated
with a disease or related environmental factors [2]. The
common statistical analysis in EWAS uses a single
marker test for association between a phenotype and
each of the CpG sites. Given the number of CpG sites
tested in EWAS, a univariate test must meet a stringent
threshold for statistical significance (for example, p
value < 1 × 10− 7 often used for the Illumina 450 K
array); in addition, a univariate test does not take ad-
vantage of possible existence of multiple associated
CpG sites within a gene. Hence, a univariate test many
be underpowered in EWAS. In this paper, we consider
statistical methods that test for the association between
multiple CpG sites in a gene and a phenotype
simultaneously.
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This work was motivated by analysis of the methylation
data provided by GAW20. The data set was taken from
the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study. With GOLDN data, Irvin et al. found 4
CpG sites in intron 1 of CPT1A that were strongly associ-
ated with both very-low-density lipoprotein cholesterol
(VLDL-C) and triglyceride (TG) [3]. A question of major
interest is to study whether other genes are associated
with VLDL-C and TG. In other words, we are interested
in examining the association between methylation within
each gene and a phenotype.
Some methods have been developed to detect differen-

tially methylated regions (DMRs) [4, 5]. For example,
Jaffe et al. [4] proposed a method called bump hunting
to detect DMRs associated with a continuous trait in a
well-characterized population of newborns. Butcher and
Beck [5] proposed a flexible window-based approach to
discover DMRs. Many methods detecting DMRs assume
that nearby CpG sites are methylated/unmethylated in
the same direction, however, to the best of our know-
ledge, few gene-based analysis for methylation data con-
sider the scenario that the change of methylation status
can be in different directions within a gene. Importantly,
because it is reasonable to assume that not all the CpG
sites in a gene are related to the phenotype, it is challen-
ging and important to adaptively aggregate information
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over multiple associated CpG sites while eliminating or
minimizing the effects of nonassociated CpG sites. To
solve this problem, we apply a highly adaptive test called
adaptive sum of powered score (aSPU) test [6] and its
weighted version called aSPUw test [7], which have
promising performance in GWAS, to methylation data
for the first time. The main idea of the aSPU or aSPUw
test is that, because we do not know which and how
many CpG sites in the given gene are associated with
the phenotype, we construct a class of sum of powered
score–weighted (SPUw) tests. The aSPUw test then
selects the CpG site with the most significant result with
a proper adjustment for multiple testing.
In application to the GAW20 data set, to account for

familial structures, we apply a linear mixed-effects model
and use an estimated genetic relationship matrix (GRM)
(estimating the kinship coefficients among the individ-
uals) as the correlation matrix of a random effect. Then
we construct the aSPUw test based on the score function
from the linear mixed-effects model. We find that
methylation levels in gene CPT1A are associated with
the pretreatment fasting TGs at the genome-wide signifi-
cance level, whereas methylation levels in gene APOA5
are possibly associated at a suggestive significance level.

Methods
In this section, we briefly introduce the aSPUw test for
family-based methylation data.
Suppose for ni related family members in the family

i (i = 1, 2,…, F), we have an ni-vector yi ¼ ðyi1;…; yiniÞ0
for a phenotype, for example, log pretreatment fasting TG
levels, an ni × p matrix Gi = (Gi1,…,Gip)

′ for for p CpG
sites, and an ni × q matrix Xi = (Xi1,…, Xiq)

′ for q fixed co-
variates, including intercepts. For all the methylation
levels at p CpG sites, we use the methylation beta-values,
which roughly represents the fractions of methylated cyto-
sine molecules in the given sample at specific CpG sites.

In total, we have data on n individuals with n ¼PF
i¼1ni:

To derive the test statistic, we first briefly describe how to
calculate the score function in a generalized linear mixed
model (GLMM), then we describe how to construct the test
statistics based on the score vector. A GLMM is an exten-
sion of a generalized linear model (GLM) with the addition
of 1 or more random effects that are used to account for
correlations among the subjects (e.g., members from the
same family). Here we use the following model with a
random intercept:

g E Yijbið Þð Þ ¼ Xiαþ Giβþ bi;

b ¼ b01; b
0
2;…b0F

� �0 � N 0;
XK

k¼1

TkΨk

 !

;

where g() is the canonical link function; bi ¼ ðbi1;…; biniÞ0
is the vector of random effects for family i; each Ψk is a
prespecified n × n positive-definite correlation matrix (e.g.,
GRM); and Tk is the corresponding variance component
parameter. We estimate the GRM (Ψ1) as the empirical
correlation matrix based on 20,000 randomly selected
single-nucleotide polymorphisms (SNPs). Furthermore,
we consider a within-family (shared environmental) effect
by adding a block diagonal matrix (Ψ2), where each block
consists of 1 s for each family. Chen et al. developed R
package GMMAT to fit the above GLMM, from which we
extract the score vector U = (U1,…,Up)

′ and its corre-
sponding covariance matrix V for p CpG sites [8].
In GWAS, many existing association tests either directly

use the score vector U or its asymptotically equivalent
counterparts, suggesting that most information is already
contained in U [6]. As demonstrated in many simulations
in the GWAS context [6], depending on the unknown
association patterns to be tested, different tests may or
may not be powerful. Here, we apply the aSPU test [6]
idea and use U to construct weights to up-weight the ef-
fect of more informative signals. As both SNPs in GWAS
and methylation levels in EWAS are treated as predictors
in a GLM or GLMM, the extension of the aSPU test from
GWAS to EWAS is straightforward with barely any
changes; however, the variation of methylation levels
changes a lot across the CpG sites. If we treat all CpG sites
equally and put a constant weight on the CpG sites, the
signal may be masked by some CpG sites with the larger
variance. To put more weights on the CpG sites with the
smaller variances, we propose using the inverse standard
deviation SPUw [7] tests indexed by a positive integer γ:

TSPUw γð Þ ¼
Xp

j¼1

ω jU j
� �γ

;

where ω j ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðGijÞ

p
is the weight for CpG site j,

and the SPUw test reduces to the usual sum of powered
score (SPU) test if ωJ = 1 for all j. Various values of γ lead
to different SPUw tests that are more powerful under
different situations. Hence, for a given scenario with
unknown association patterns, we use various SPUw tests
to increase the chance of having at least one of them to be
powerful. The SPUw tests cover the (weighted) Sum test
and sum of squared score (SSU) test as 2 special cases
with the corresponding γ = 1 and γ= 2, respectively. As
γ→∞, the SPUw test would converge to the minimum p
value (UminP) test [6]. Even though aSPU and aSPUw are
originally proposed to analyze GWAS data, as shown in
the above formula, once we get the score vectors U and
its covariance matrix V from the GLMM, we can apply
both aSPU and aSPUw tests directly.
Depending on the underlying unknown association

pattern, one of the SPUw(γ) tests may be more powerful.
For a given data set, we may gain power if we can select
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the value of γ for the SPUw tests adaptively. As in Pan
et al. [6], an adaptive SPUw test simply combines the
results of multiple SPUw tests by taking the minimum p
values for some candidate values of γ in Γ; for example,
Γ = {1, 2, 3,..., 6, ∞}:

TaSPUw γð Þ ¼ min
γ∈Γ

PSPUw γð Þ:

For the choice of Γ set, we recommend including both
small γ values such as 1, 2, and medium γ values such as
3,..., 6 in Γ to maintain high power when the signals are
either dense or relatively sparse; in addition, we also rec-
ommend including ∞ in Γ to cover the case when the
signals are highly sparse.
Note that TaSPUw is no longer a genuine p value,

however, we can use a single layer of Monte Carlo
simulations [6] to calculate the p values for SPUw(γ)
and aSPUw simultaneously. Specially, first, we simu-
late B copies of the null score vectors independently,
U(b) ~ N(0, V) for b = 1,…, B, then calculate the null
statistics TSPUw(γ) based on each null score vector U(b)

accordingly. Next, the p value of SPUw(γ) is PSPUwðγÞ
¼ ½1þPB

b¼1IðjSPUwðγÞðbÞj≥ jSPUwðγÞjÞ�=ðBþ 1Þ , and

the p value for aSPUw is PaSPUw ¼ ½1þPB
b¼1Ið T ðbÞ

aSPUw

≤TaSPUwÞ�=ðBþ 1Þ, with T ðbÞ
aSPUw ¼ minγϵΓp

ðbÞ
γ and pðb1Þγ

=½Pb≠b1 IðjT
ðbÞ
SPUwðγÞj≥ jTb1

SPUwðγÞjÞ�=B.

Results
We analyzed the GOLDN study data provided by
GAW20. The GOLDN study was designed to identify
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Fig. 1 Manhattan plots of aSPUw with the inverse standard deviation weig
(right) applied to the GOLDN study data
the genetic impact on the lipid response to interven-
tions [3]. Here we tested the association between the
log pretreatment fasting TGs and the methylation
levels of the CpG sites within each gene’s coding re-
gion (without any upstream or downstream exten-
sion); we used the identity function as the link
function in GLMM (leading to a linear mixed model
[LMM]). Furthermore, we adjusted for age, sex, and
study center to eliminate potential confounding ef-
fects. We included K = 2 variance components: first,
instead of using the kinship matrix, we used a ran-
dom set of 20,000 SNPs from the GOLDN GWAS
data to estimate the GRM; second, we created a
within-family correlation matrix with elements all 1 s
for all the members in the same family, and 0 other-
wise. We tested 15,731 genes with a conservative
Bonferroni adjustment with a genome-wide signifi-
cance level at 0.05/15731 ≅ 3 × 10− 6.
Figure 1 shows the Manhattan for aSPUw with inverse

standard deviations weight ω j ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðGijÞ

p
, and

aSPUw (ie, aSPU) with a constant weight ωj = 1.
Perhaps because of treating all CpG sites equally,

aSPUw (ie, aSPU) with a constant weight does not
find any significant genes after the Bonferroni correc-
tion. In contrast, aSPUw with inverse standard devia-
tions weight identifies one significant gene, CPT1A,
which is also identified by Irvin et al. [3].
The quantile–quantile (Q-Q) plots (not shown) in-

dicate that all tests yield slightly conservative results
(genomic control lambda < 1). Table 1 shows the indi-
vidual p values for 2 genes, CPT1A and APOA5, with
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p Þ (left) and aSPU with a constant weight (ωj = 1)



Table 1 The p values of the SPUw and aSPUw tests with different sets of weights

ωj Gene SPUw(1) SPUw(2) SPUw(3) SPUw(4) SPUw(∞) aSPUw

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðGijÞ

p
CPT1A 6.2E-01 2.1E-02 4.6E-04 9.0E-06 0.0E + 00 1.0E-06

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðGijÞ

p
APOA5 9.1E-01 2.5E-02 1.0E-02 1.1E-03 5.3E-05 1.3E-04

SPU(1) SPU(2) SPU(3) SPU(4) SPU(∞) aSPU

1 CPT1A 2.3E-01 2.0E-02 1.7E-02 1.7E-02 2.1E-02 3.2E-02

1 APOA5 1.0E-02 5.0E-06 5.0E-06 5.0E-06 5.0E-06 1.1E-05
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different weights. For fasting TGs, APOA5 is known to be
associated with several significant SNPs, such as rs964184
(p value = 7 × 10− 240 [9]). Although aSPU, aSPUw, and
other individual SPU or SPUw tests are unable to detect
APOA5 at the genome-wide significance level, the p values
are usually small (< 0.05). Perhaps as a consequence of the
highly sparse signals in APOA5, the SPUw or the SPU
with a larger γ gives a more significant p value. The
aSPUw test can detect CPT1A at the genome-wide signifi-
cance level, whereas the aSPU (with a constant weight)
fails to do so. However, for APOA5, aSPU with a constant
weight yields a smaller p value than aSPUw with the in-
verse of standard deviation weight. Note that the SPU(2)
test is equivalent to the sequence kernel association test
(SKAT) with a linear kernel [10]; SPU(2) fails to identify
CPT1A and APOA5 at the genome-wide significance level.

Discussion and conclusions
In this paper, we applied an adaptive test, aSPU [6], and
its weighted version, aSPUw [7], to the GOLDN study
data and found 1 significant gene, CPT1A, with its methy-
lation levels associated with the log pretreatment fasting
TGs. Under different scenarios with differing signal spars-
ity levels, different tests may be more powerful. Using
adaptive testing may achieve overall good performance as
we do not know the underlying truth. To alleviate the ef-
fects of varying variability of the methylation levels across
the CpG sites when conducting a gene-based test, we pro-
posed using the aSPUw test, putting more weights on the
CpG sites with smaller variances. Compared to the un-
weighted aSPU test or other SPU tests (including SKAT),
the aSPUw test would be more powerful if CpG sites with
smaller variances are more likely to be truly associated
with the trait, but may lose power otherwise. More gener-
ally, following the idea of the aSPU test in combining mul-
tiple SPU tests, it is straightforward and potentially
productive to combine various weighted and unweighted
aSPUw and aSPU tests, which may maintain higher power
across different situations.
There are several limitations in the current study. First,

normalization is needed but remains challenging for
methylation data. Among others, normalization helps re-
duce the impact of batch effects, leading to more reliable
subsequent analyses. In our current study, we used the
given methylation data without any further normalization.
Second, because of the page limit, we did not conduct
simulation studies to evaluate the performance of aSPU
and aSPUw with methylation data, although their promis-
ing performance has been shown with extensive simula-
tions and real data analyses in the context of GWAS [6].
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