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Abstract

High-throughput platforms allow the characterization of thousands of previously known methylation sites. These
platforms have great potential for investigating the epigenetic effects that are partially responsible for gene
expression control. Methylation sites provide a bridge for the investigation of real-time environmental contributions
on genomic events by the alteration of methylation status of those sites. Using the data provided by GAW20’s
organization committee, we calculated the heritability estimates of each cytosine-phosphate-guanine (CpG) island
before and after the use of fenofibrate, a lipid-control drug. Surprisingly, we detected substantially high heritability
estimates before drug usage. This somewhat unexpected high sample correlation was corrected by the use of
principal components and the distributions of heritability estimates before and after fenofibrate treatment, which
made the distributions comparable. The methylation sites located near a gene were collected and a genetic
relationship matrix estimated to represent the overall correlation between samples. We implemented a random-
effect association test to screen genes whose methylation patterns partially explain the observable high-density
lipoprotein (HDL) heritability. Our leading association was observed for the TMEM52 gene that encodes a
transmembrane protein, and is largely expressed in the liver, had not been previously associated with HDL until this
manuscript. Using a variance component decomposition framework with the linear mixed model allows the
integration of data from different sources, such as methylation, gene expression, metabolomics, and proteomics.
The decomposition of the genetic variance component decomposition provides a flexible analytical approach for
the challenges of this new omics era.

Background
The identification of reliable genetic factors associated
with phenotypes of interest is the major goal of large gen-
etic and epidemiologic projects. The immense number of
multiple hypotheses tested and the confounding effects of
environmental contribution jeopardize this identification
[1]. The correct modeling of the environmental contribu-
tion to a trait of interest is very challenging as it is almost
impossible to control modeling of the environmental

contribution in study design using human samples. The
assessment of genome-wide methylation patterns provides
an interesting bridge to understanding the epigenetic ef-
fects and, consequently, the environmental contribution
to any phenotypes being studied. Highly methylated DNA
sequences have a significant repressive role in the control
of the expression of nearby genes. The presence of meth-
ylated terminals on those sites represses the transcription
machinery assembly and, consequently, the expression of
a target gene. The fine control of gene expression has a
considerable impact on messenger RNA transcription
and, consequently, on protein production. Genome-wide
methylation platforms enable the simultaneous analysis of
hundreds of thousands of suitable methylated sites that
are dispersed across the human genome. This type of data
has been used by various epigenetic-wide association
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studies for the identification of differentially methylated
cytosine-phosphate-guanine (CpG) sites associated with
diseases, clinical outcomes, environmental exposures, or
other experimental conditions [2]. Despite their clear po-
tential, the incorporation of methylation data in a genetic
analytical framework is still debatable and open for alter-
native approaches [3].
The GAW20 challenged the scientific community to

propose and test different analytical methods to be ap-
plied at the genetic and epigenetic data shared by the
Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) initiative [4, 5]. The status of methylation
sites near genes were collected and for each gene we cal-
culate a pairwise genetic relationship matrix (GRM) be-
tween samples. These gene-specific GRMs represent the
covariance between methylation sites surrounding a
gene and are a simplified representation of the transcrip-
tional control acting on this gene. These gene-specific
GRMs were tested as additional genetic variance compo-
nents to explain phenotypic variability for the real
high-density lipoprotein 2 (HDL2) phenotype as shared
by GAW20 organization [5]. Gene-specific GRMs re-
sponsible for a considerable proportion of HDL pheno-
typic heritability were selected. No GRM-based
association tested reached the desired multiple hypoth-
esis corrected threshold and the best candidate identified
was the gene TMEM5 using the methylation data before
use of fenofibrate. This candidate gene encodes a trans-
membrane protein and was implicated with the liver en-
zymatic repertoire, but until our study, it had not been
associated with hypercholesteremia. Genetic variance
component decomposition offers the required flexibility
to incorporate different sources of biological data [6].
The biological data integration is challenging, but, at the
same time, has great potential to improve our under-
standing of the different molecular layers acting in a
phenotype of interest.

Methods
Heritability estimation of methylated genomic sites
The additive heritability estimate was calculated for each
methylated site using the polygenic routine implemented
in SOLAR [7]. The methylation sites were
inverse-normalized and before and after fenofibrate heri-
tabilities were estimated on each site and their distribu-
tions were compared to evaluate overall differences in
genome-wide methylation patterns resulting from the
fenofibrate use.

Principal component analysis of methylation data
The complete set of inversed-normalized methylation
sites was randomized and a subset of 10% of them was
selected. Principal components were estimated, using
native R implementation, for the selected subset of

methylation sites [8]. The first 20 principal components
were obtained and used to decorrelate the methylation
data before and after the use of fenofibrate.

Calculation of gene-specific GRM using methylation data
Using the annotation data provided by GAW20
organization, we defined the complete set of methylation
sites mapped to each gene. This information was used as
input for an in-house program that calculates the correl-
ation between individuals based on the status of their re-
spective methylation sites for each gene. The
gene-specific methylation sites collected were standard-
ized and a matrix Z was defined. A covariance matrix R
was derived from Z as R = Z * ZT where ZT is the trans-
pose of Z. A scaling transformation was applied to Z to
ensure that all diagonal elements equaled 1. The result-
ing matrix, K, was our gene-specific covariance kernel
[9]. The kernels represent the pairwise sample covari-
ance estimates and these matrices are introduced as add-
itional variance components of phenotypic variability
into a linear mixed model [6].

Linear mixed model with an additional methylation
component
A new variance component parameter was added into
a standard pedigree-based variance component model,
Ω ¼ σ2Totalð2ϕh2r þ 2Eh2meth þ Ie2Þ , where Ω is the
phenotypic covariance matrix; σ2

Total is the total

phenotypic variance; nd h2r , h
2
meth , and e2, respectively,

represent the proportion that can be attributed to the
residual additive effect of polygenes, the gene-specific
methylation kernel effect, and a random environmen-
tal effect. Several critical structuring kernels are
employed to model the covariances between individ-
uals: Φ is the expected kinship matrix integrated from
the pedigree; E is the empirically estimated gene specific
methylation GRM; and I is the identity matrix. Such
kernel-based approaches to test the combined effect of
multiple genetic variants were proposed decades ago [10]
and have grown in popularity recently [11, 12].
Maximum likelihood estimates (assuming a multi-

variate normal probability density) and likelihood ra-
tio test (LRT) of the h2meth parameter was obtained
using an extension of the polygenic command in
SOLAR, independently for each gene-specific GRM.
The significance of each GRM was obtained by LRT
using a null model Ω ¼ σ2Totalð2ϕh2r þ Ie2Þ as refer-

ence. Because the variance component h2meth is tested
on its boundary, the LRT statistic is distributed as a
50:50 mixture of a 1-degree-of-freedom chi-square
and a point-of-mass zero, although this is conserva-
tive. For both models, we calculated the heritability of
HDL measured on the second and fourth collection,
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which matches the methylation data collection. We
used sex and age covariates on the linear mixed
model.

Results
Statistical properties of the genome-wide methylated sites
A set of 463,996 unique methylation sites were shared by
the GAW20 organization, and using the annotation pro-
vided, we defined a subset of 349,755 sites linked to at least
1 gene. The methylation data was collected in a set of 990
individuals before fenofibrate usage and 520 individuals
after the lipid drug treatment. We identified 22,313 genes
with at least 1 methylation site and 80% of the genes had
fewer than 20 methylation sites (Fig. 1a). The mean methy-
lation intensities of each site were compared before and
after fenofibrate treatment (Fig. 1b). The correlation be-
tween methylation sites pre- and posttreatment was pro-
nounced (Pearson correlation = 0.93). The majority of
methylated sites is expected to show low to modest herit-
ability estimates. These sites represent responsive genomic
elements and provide the molecular bridge between the en-
vironmental contribution and fine gene-expression control.
To test this premise, we calculated the narrow sense herit-
ability estimate of each methylation site on the 2 time
points shared. The distributions of heritabilities estimates
(Fig. 2) showed a substantial difference and, specially, unex-
pectedly high heritability estimates before fenofibrate treat-
ment (Fig. 2a). We hypothesized that the high heritability
estimates were caused by a batch effect, during experimen-
tal or data processing. We calculated the first 20 principal
components (PCs) of methylation data before and after use
of fenofibrate. The PCs were added, as covariates, in the lin-
ear model and new heritability estimates were calculated
(Fig. 2c and d). The addition of PCs was successful and
new h2 distributions were comparable (Fig. 2a and c). The
corrected heritability estimates are much closer than
the ones observed in similar studies using methylation
data [13].

We constructed gene-specific GRM using the PC ana-
lysis corrected methylation sites linked to each gene be-
fore and after fenofibrate treatment. The covariance
GRMs were estimated for a set of 15,596 genes that pre-
sented at least 5 methylation sites annotated to it. This
minimum number of methylation sites is a requirement
to construct valid GRMs as genes with few methylation
site measurements could generate high pairwise correl-
ation scores as a result of the lack of information. The
contribution of each gene-specific GRM to the pheno-
typic variability of HDL phenotype was tested using a
LRT in the second and fourth time points matching the
methylation data collections. No gene-specific–based as-
sociation tested reached the required multiple hypothesis
corrected significance threshold (1.35 × 10− 6) in either
time point analyzed. The association results for the
GRMs calculated before fenofibrate use are presented in
Figs. 3 and 4. We identified an interesting association on
the gene TMEM5 (p < 5.9 × 10− 5). This gene encodes a
highly conserved transmembrane protein almost exclu-
sively expressed in the pancreatic tissue, but until our
study, had not been associated with HDL blood concen-
tration [14]. The status of methylation sites near
TMEM5 could explain almost 4% of the observed
phenotypic variability of HDL. The association statistic
distribution was not inflated nor deflated (Fig. 4). The
TMEM5 is an interesting candidate gene but requires an
independent replication on similar studies.

Discussion and conclusions
The correct modeling of genetic and environmental
components is a pivotal step in the identification of reli-
able associations between genetic markers and pheno-
types of interest. In general, the environmental
component is overlooked and is assumed shared be-
tween individuals to simplify the analytical framework
applied [4]. Genome-wide methylation arrays were de-
signed to capture the methylation status of thousands of

Fig. 1 a Histogram of the number of methylation sites linked genes; b scatterplot of mean intensities of methylation sites before and after
fenofibrate treatment
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previously detected methylation sites. These platforms
measure an active layer of transcriptional control where
methylated CpG islands in gene promoters interact with
transcription complex machinery and allow a fine con-
trol of gene expression. Highly methylated promoter se-
quences tend to repress gene expression by negatively
interacting with nuclear transcription machinery [15].
The gene expression control, mediated by methylation
interaction, provide a promising bridge between envir-
onment contribution and real-time molecular re-
sponses to those insults. Large genetic projects

collected epigenetic data to try to identify differen-
tially methylated sites associated with disease states,
clinical outcomes, environmental exposures, or other
experimental conditions [2, 15]. Despite their poten-
tial, the correct modeling for the incorporation of
methylation data in a genetic analytical framework is
debatable and it became one of the main topics for
GAW20 workshop [5].
In this article, we model methylation data using

gene-specific GRMs carrying the pairwise samples co-
variance between methylation sites flanking 15,596 genes

Fig. 2 Histogram methylation site heritability estimates. a Before fenofibrate treatment. b After fenofibrate treatment. c Before fenofibrate drug
treatment corrected by PC analyses. d After fenofibrate treatment correct by PC analyses

Fig. 3 Manhattan plot of gene-specific GRM association results for HDL trait before fenofibrate treatment
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dispersed throughout the human genome. The contribu-
tion of each GRM for the HDL phenotypic variability
was defined using a LRT association test comparing 2
models with and without this added methylation term.
We didn’t detect any association that reached the mul-
tiple hypothesis corrected significance threshold on ei-
ther time point. Our best candidate was an interesting
association between the gene TMEM5 and HDL before
the use of fenofibrate. Methylation sites flanking this
candidate gene were able to explain almost 4% of the
trait’s phenotypic variability. These results highlight the
relevance of the epigenetic layer of information flanking
this gene and its impact on the overall HDL plasmatic
concentration. The gene TMEM5 encodes a Type II
transmembrane protein with glycosyltransferase function
and is expressed almost exclusively at pancreatic tissue
[14, 16]. The TMEM5 gene has been associated with
cobblestone lissencephaly, but it has never been associ-
ated with human hypocholesteremia previously [17].
This is a preliminary finding and requires an independ-
ent validation [12].
Phenotypic variance component decomposition, the

model presented in this article, offers the desired flexibil-
ity to combine different sources of information contrib-
uting to a phenotype under study [6]. The use of
covariance kernels to combine the individual contribu-
tions of single-nucleotide polymorphisms has gained a
lot of attention lately with the advent of the new
cost-effective whole-genome sequencing platforms [11].

These platforms allow the collection of a very dense
panel of genetic variations and these alternative ap-
proaches are necessary to reduce the burden imposed by
the astronomical number of independent statistical tests
performed. The combination of different sources of bio-
logical data, such as epigenetic, transcriptomic, prote-
omic, and metabolomics, will improve our
understanding of the biological phenomenon. Different
sources of biological data can be interpreted as variance
components of the observable phenotypic variability of a
trait of interest. Combination of this difference sources
will improve our knowledge about the molecular players
acting on a phenotype and will aid the development of a
new generation of personalized drugs.
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