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Abstract

Background: Triglyceride (TG) concentrations decrease in response to fenofibrate treatment, and also are associated
with DNA methylation. But how interactions between fenofibrate response and DNA methylation affect TGs remains
unclear.

Methods: In the present study, we identified and compared differential methylation sites associated with TG
concentrations in individuals before and after fenofibrate treatment. We then estimated interactions between
fenofibrate treatment and methylation to identify differential methylation effects associated with fenofibrate
treatment on TG concentrations using the entire longitudinal family sample. To account for within-family and
within-individual corrections, the generalized estimating equations approach was used to estimate main and
interaction effects between methylation sites and fenofibrate treatment, adjusting for potential confounders.
Analyses were also performed with and without adjusting for high-density lipoprotein (HDL) concentrations.

Results: Prior to fenofibrate treatment, 23 cytosine-phosphate-guanine (CpG) sites were significantly associated
with TG concentrations, while only 13 CpG sites were identified posttreatment, adjusting for HDL. Without
adjusting for HDL, pretreatment, 20 CpG sites were significantly associated with TG concentrations, while only
12 CpG sites were identified posttreatment. Among these sites, only one differential site (cg19003390 in the
CPT1A gene) overlapped from pre- and posttreatment measurements regardless of HDL adjustment.
Furthermore, 11 methylation sites showed substantial interaction effects (p < 1.43 × 10−7with Bonferroni
correction) with or without HDL adjustment when using the whole longitudinal data.

Conclusions: Our analyses suggest that DNA methylation likely modified the effect of fenofibrate on TG concentrations.
Differential fenofibrate-associated methylation sites on TGs differed with and without adjusting for HDL concentrations,
suggesting that these HDLs and TGs might share some common epigenetic processes.

Background
Blood lipid levels, including triglycerides (TGs) and
high-density lipoproteins (HDLs) are heritable and
modifiable risk factors for cardiovascular rand metabolic
disease [1]. Although numerous genetic variants and
genes have been associated with TGs and HDLs, these
loci explain only a modest fraction of the observed

variance [2]. DNA methylation is an epigenetic process
involving the methylation of cytosine, usually at
cytosine-phosphate-guanine dinucleotides (CpGs) in the
promoter region or within genes. It plays an important
role in gene regulation through influencing chromatin
structures and changing coding regions for transcription
[3]. Aging, diet, and exposure to metals all affect DNA
methylation. Exposure to a number of chemicals also in-
duces modification of cytosine, leading to its methylation
[3]. Depending on whether a reduction or an addition in
DNA methylation occurs, the sequence can either be

* Correspondence: yfchiu@nhri.org.tw
1Institute of Population Health Sciences, National Health Research Institutes,
35 Keyan Road, Zhunan, Miaoli 35053, Taiwan
Full list of author information is available at the end of the article

BMC Proceedings

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yu et al. BMC Proceedings 2018, 12(Suppl 9):48
https://doi.org/10.1186/s12919-018-0132-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12919-018-0132-y&domain=pdf
mailto:yfchiu@nhri.org.tw
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


hyper- or hypomethylated. Studying epigenetic contribu-
tions to TGs can help with the identification of relevant
TG pathways and genes and, further, facilitate the design
of new treatments and biomarkers for cardiovascular
and metabolic diseases. Associations between levels of
DNA methylation and TGs have been identified in
epigenome-wide studies [4]. Methylation of CpGs has
also been correlated with TG drugs [2]. However, how
these associations are interrelated warrants further in-
vestigation. The present study aimed to assess the inter-
actions between fenofibrate use and CpG methylation
on TG concentrations using a pre- and posttreatment
longitudinal study design. Differential sites with signifi-
cant interactions are regarded as drug-associated meth-
ylations on TGs.

Methods and materials
Epigenome-wide association study and phenotype data
Association mapping was conducted using epigenome-wide
association study real data from the GAW20 data set. A
total of 463,995 whole-genome CpG methylation sites were
assayed for 1105 individuals from 188 multiplex pedigrees
[2]. A total of 114,240 CpG sites were not mapped to spe-
cific genes, resulting in 349,755 sites being included in the
analysis. There were four TG and HDL measurements for
each person. The first two measurements were obtained be-
fore fenofibrate treatment, while the last two were obtained
posttreatment [5]. A total of 995 individuals from 182 pedi-
grees with pretreatment measurements and 530 individuals
from 153 pedigrees with posttreatment measurements were
included in the cross sectional analyses. A total of 421 indi-
viduals from 138 families with both pre- and posttreatment
data were included in the longitudinal data analysis.
To assess fenofibrate and methylation effects on TGs,

we used an average of the first two TG measurements as
a pretreatment phenotype, and an average of the last
two TG measurements as a posttreatment phenotype.
As a result, all individuals had either or both pre- and
posttreatment measurements for methylation and phe-
notypes. TG levels were log-transformed to approximate
normality before averaging the first two or the last two
measurements.

Longitudinal data analysis
To identify differential CpGs interacting with treatment
effects to influence TGs, we modeled TGs as a function
of percent methylation, fenofibrate treatment, and their
interactions at individual CpGs using the generalized es-
timating equation (GEE) approach [6]. Population strati-
fication assessed by principal component analysis was
minimal in this study population [5]. Therefore, we did
not adjust for principal components in this study. We
adjusted for covariates including age, sex, study site, and
smoking at baseline in all analyses. Analyses were also

run with and without adjusting for HDL concentrations.
HDL concentrations were estimated identically to TG
concentrations, by averaging the first two log-transformed
HDL measurements and separately, the last two
log-transformed HDL measurements. A dummy variable
was created to indicate pre- and posttreatment (ie “with-
out” treatment and “with” treatment, respectively). The
following marginal model was used to analyze family data
with repeated measures for the mth methylation site:
E(Yijr) = α + βTXijr + εTijr + γGijrm + ηGijrmTijr where Yijr

is the log-transformed TG; Xijr is the vector of covariates
as stated above; Tijr is the dummy variable for treatment;
Gijrm is the percent methylation at the mth methylation
site for individual from family i at the rth time point,
i = 1, …, N, j = 1, …, ni, r = 1,2, m = 1,…,M; N is the
total number of families; M is the total number of
methylation sites; and α, βT, ε, γ and η are the regres-
sion coefficients for the intercept, covariates, treat-
ment, methylation, and drug–methylation interaction,
respectively. We were interested in the significance of
η̂ , the estimate of interaction between methylation
and treatment. Note that the dummy variable Tijr and
its interaction with methylation were not included in
the model when conducting pre- and posttreatment
analyses separately. The within-family and
within-individual correlations were accounted for in
the GEE approach [6]. An exchangeable working cor-
relation structure was used in the analyses. All ana-
lyses were conducted using the statistical computing
software package R 3.2.2.
To avoid over adjustment, correlations between HDL

and TG were calculated. Correlation coefficients be-
tween the two log-transformed traits TG and HDL at
pre- and posttreatment were − 0.448 and − 0.449, re-
spectively. Thus, the overall average correlation coeffi-
cient was − 0.45.A Bonferroni-corrected genome-wide
level 1.43×10−7 (0.05/349755CpGs) was used for the
statistical significance threshold for the drug–methyla-
tion interaction.

Results
Figure 1 and Fig. 2 show differential CpGs associated
with TG levels with and without adjusting for HDL from
pre- (a) and posttreatment (b), respectively. With adjust-
ment for HDL, before treatment, 23 CpGs were identi-
fied, whereas only 13 CpGs were identified
posttreatment (Fig. 1). Without adjusting for HDL, be-
fore treatment, 20 CpGs were identified, whereas only
12 CpGs were identified posttreatment (Fig. 2). Among
these sites, only one differential site (cg19003390 in the
CPT1A gene) overlapped from pre- and posttreatment
measurements, with and without adjusting for HDL.
Among pretreatment measurements, 6 CpG sites were
identified, with and without adjusting for HDL. On
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posttreatment, 5 sites were identified, with and without
adjusting for HDL. These findings suggest that
fenofibrate might alter TG concentrations, at least in
part, through altering DNA methylation as well as
through HDL.
We further assessed interactions between treatment

and individual CpGs with and without additionally
adjusting for HDL (Table 1; Fig. 3) using the whole
longitudinal sample. CpG sites with significant
drug-associated impact on TG concentrations differed
with and without adjusting for HDL, except
cg20354777 of the SPSB4 gene (Fig. 3). The differen-
tial sites with HDL adjustment included cg02899039,
cg11817309, cg20354777, cg00089430, cg16757281,

and cg23071186 on chromosomes 1, 1, 3, 5, 16, and
19, respectively (Table 1), suggesting that HDL might
be a confounder for these interactions. In contrast,
the differential sites without HDL adjustment
included cg07212563, cg17795291, cg13773148,
cg14710025, and cg04985582 on chromosomes 1, 8,
9, 13, and 21, respectively (Table 1). Only the
cg20354777 site from the SPSB4 gene was associated
with TG concentrations regardless of HDL
adjustment. The main effect of treatment, when ex-
cluding DNA methylation from the model, was sub-
stantially significant with an estimated effect of − 0.35
and a p value of 2.45 ×10−53 after adjusting for age,
sex, study site, smoking, and HDL.

Fig. 1 Differential CpGs associated with TG concentrations, after adjusting for HDLpre- (a) and posttreatment (b)

Fig. 2 Differential CpGs associated with TG concentrations, without adjusting for HDL pre- (a) and posttreatment (b)
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Discussion and conclusions
Differences in the identified CpG sites between pre- and
posttreatment suggested that fenofibrate might alter TG
concentrations, partially through altering DNA methyla-
tion. The CpGs identified pre- and posttreatment dif-
fered markedly. These findings indicate the existence of
moderation effects from DNA methylation (or drug–
methylation interactions) on TG concentrations. While
DNA methylation does changes over time in individuals
[7], in this study, time and drug effects confound each
other and could not be distinguished in analyses. Only
one methylation site, which was within CPT1A, showed
an association with TGs pre- and posttreatment; other
methylation sites were associated with TGs either pre-
or posttreatment only. This finding confirmed the previ-
ous result that CPT1A methylation was strongly and ro-
bustly associated with TGs [2]. Furthermore, the
interaction between the SPSB4 gene and fenofibrate was
significant regardless of HDL adjustment, suggesting
that this interaction was independent of HDL. For
ZNF692, SDHA, C16orf13, and TNFSF14, their drug–
methylation interaction effects on TGs were significant
only when adjusting for HDL, suggesting that HDL
might be a confounder for these interactions. However,
the drug–methylation interactions from HS2ST1, PBK,
BRD3, MIPEP, and ABCC13 were significant only when
not adjusting for HDL. The interaction effects on TGs
differed by the presence or absence of HDL adjustment,
implying that TG and HDL are likely to share some
epigenetic processes. Some genes with differential

drug-associated CpG sites (drug–methylation interac-
tions) on TGs, including HS2ST1, ABCC13, ZNF692,
SPSB4, SDHA, and TNFSF14, were linked to metabolic
risk factors or diseases (such as TG, glucose, HDL, type
2 diabetes, and ischemic heart disease) in previous stud-
ies [8–12]. PBK and BRD3 were related to cancers and
MIPEP was linked to left ventricular noncompaction,
hypotonia, and infant death [13–15]. The correlations
and interactions between fenofibrate treatment and
CpGs on TGs reported here warrant further
investigation.
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